

III. Conference on "Monitoring & Process Control of Anaerobic Digestion Plants"

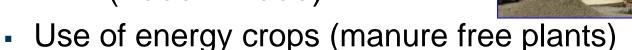
MARCH **29** — **30 2017** IN LEIPZIG

Measuring concept for the biogas measuring program BMP III

Hans Oechsner, Jan Liebetrau, Jan Postel, Mathias Effenberger, Christian Moschner

University of Hohenheim; DBFZ, Leipzig; LfL, Freising; CAU, Kiel

Measuring concept for the biogas measuring program (BMP III)

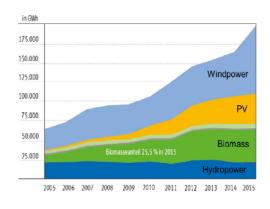


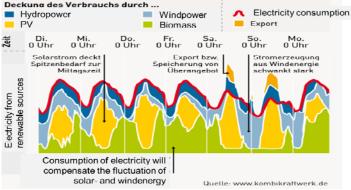
Previous German Biogas Measuring Programs - BMPs

LANDESANSTALT für Agrartechnik & Bioenergie

- Selection of plants based on technological and material aspects
- Use of organic waste, manure or energy crops
- **BMP II** (2005 2008)

- Efficient use of exhaust heat
- Solid (dry-) fermentation


Handbooks with detailed information, available at FNR



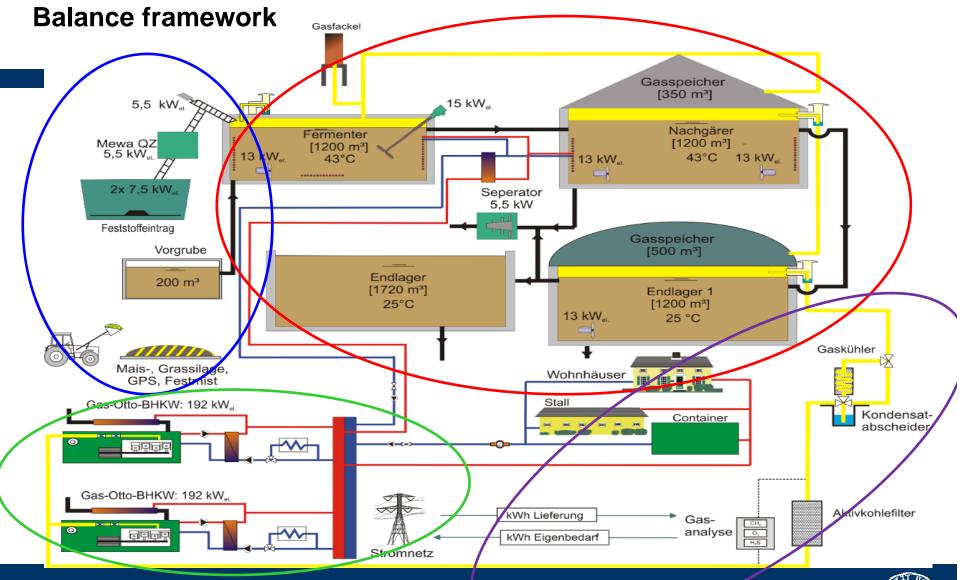
Problem and Aim of the BMP III

- Increasing share of renewable energy(33 % of consumed electricity)
- New challenges
 - Better efficiency in production and use
 - Flexibility and repowering
- State of the art for existing and innovative technologies
- Knowledge transfer to policy, practise and consulting

Evaluation of 60 biogas plants for a period of 1 year each by 4 partner institutes

LANDESANSTALT für Agrartechnik & Bioenergie

- Plants with innovative heat usage concepts
- Demand driven production of electricity
- Pretreatment of sustrate
- Treatment of digestate
- Small farm biogas plants
- Energetic efficient plants
- Plants with repowering
- Flexible driven plants


Provision of BMP III

- Data collection (monthly)
- Sample analysing
 - Chemical parameters; pH, VFA, alcohols, FOS/TAC, FoTS, fiber content, heating value, ...
 - Methane yield of substrates
- Balancing of input- and output-streams
- Energy production and consumption (electricity and heat)
- Environmental aspects of plants (residual methane potential)
- Economy of plants

German Biogas Measuring Programs BMP's

3rd Conference on Monitoring and Process Control of Anaerobic Digestion Plants Measuring concept for the biogas measuring program BMP III Hans Oechsner 29th to 30th March 2017, Leipzig, Germany

Overview - veracity and availability of data

Liebetrau, Postel, 2017

available
Partly available verfügbar
Seldom available
Not available
Lab analysis
No Standard lab analysis
Basic claims data
Veracity questionable

 $\dot{V}_{\ddot{\mathbf{U}}D}(i.N.)$ Biogas/Air $c_{CH4.\ddot{\cup}D}$ System boundary $c_{CO2,\ddot{\Pi}D}$ ϑ_{amb} CO2.ÜD $\dot{V}_F(i.B)$ Biogas/ p_{amb} $c_{H2S,\ddot{\text{U}}D}$ $\dot{V}_F(i.N.)$ $\dot{V}_{BG}(i.B)$ $\vartheta_{BG,\ddot{\mathbb{U}}D}$ $c_{CH4,F}$ $V_{BG}(i.N.)$ $p_{BG,\ddot{\cup}D}$ $c_{co2,F}$ Process energy $C_{CH4,BG}$ $C_{02.F}$ (heat) $C_{CO2,BG}$ $c_{H2S.F}$ Waste heat $c_{O2,BG}$ $\vartheta_{BG,F}$ Q_{Nutz} $c_{H2S,BG}$ \dot{m}_{Sub} $p_{BG.F}$ Q_{Eigen} P_{FWL} ϑ_{BG} \dot{V}_{Sub} Heat Biogas W_{Nutz} p_{BG} (HG) Ċ W_{Eigen} Substrate CHP Electricity $V_{Z\ddot{\mathrm{O}}}$ η_{el} \odot η_{th} Digestion Process energy Q_{Brutto} TS_{Sub} (electricity) Recirculation Q_{Netto} oTS_{sub} Q_{Fort} $H_{s,Sub}$ W_{Brutto} Y_{sub} W_{Netto} $c_{CH4.sub}$ Digestate Digestate $C_{CO2.sub}$ σ_N Säurensub $P_{FWL,N}$ Alkohole_{sub} $FoTS_G$ \dot{m}_G TS_G P_N pH_{sub} oTS_G \dot{Q}_N XA_{sub} $\dot{H}_{s,G}$ XFa_{sub} $\eta_{N,el}$ Y_G $\eta_{N.th}$ $C_{CHA,G}$ $\dot{V}_{\mathrm{N,Z\ddot{O}}}$ $FoTS_{Sub}$ $c_{CO2,G}$ XA_G

 $\dot{V}_{\ddot{\mathbf{U}}D}(i.B)$

Cross-sectional topics in BMP III for the working groups

- Evaluation of repowering steps (Effenberger, et al.)
- Energy balance, flexibilisation (Liebetrau, Postel, et al.)
- New methods for process evaluation heating value
 chemometric analysis of titration curve infrared spectroscopy (Moschner et al.)
- Economical evaluation (Liebetrau et al.)
- Efficiency of biological process methane yield and residual methane potential - round robin tests for squaring BMY-results (Hülsemann, Nägele, Oechsner)

UNIVERSITÄT HOHENHEIM

Wherefore do we need BMY-Tests?

- Economy of biogas plants is deteremined by the costs of substrates
- Quality of used substrates is variing
- Content of Carbohydrate, Protein and Fat correlates with the Energy content and the quality of biogas
- Composition of CH-Fraction is crucial influencing the digestibility
- Analytical prediction is because of complex composition of subtrates difficult

Measuring concept for the biogas measuring program (BMP III)

Guidelines for BMP-Tests

- DIN 38 414, relevant for analysing of sewage sludge
- VDI-guideline 4630 defines proceeding (2006, 2016)
- Adapted for DM-rhich digestate
- VDLUFA-Method description (2011)
- European standardization of biomethane potential tests (Holliger et al., 2016)
- Quality of laboratory tests has to be prooved

Minimum of test conditions (I)

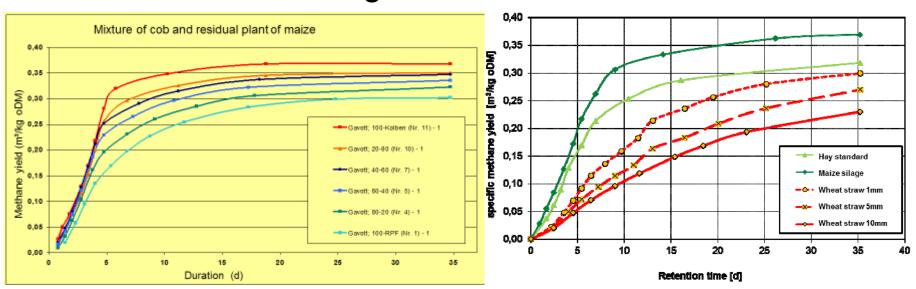
 Use of suitable, gas tight and temperated laboratory digester

- Use of well running Inoculum (high buffer capacity, low gas production of inoculum)
- Mixing relation of Inoculum: testing substrate in relation of VS: > 2:1
- Inoculum parallel as control
- At least one standard substrate (f.e. microcristalline Zellulose), for a control of the inoculum
- Digester temperature mainly 37°C ± 2°C

Minimum of test conditions (II)

- 3 Replications each substrate
- Analysing the biogas yield as as possible

- For each sampling of gas volume, the gasquality is relevant
- At least 25 days of digestion, better 35 days
- Cancellation point: < 0,5 % of the previous gasvolume at minimum 3 days



Minimum of test conditions (III)

- Comparison of the methane yield per kg VS-input
- Correcting of the VS-value for the value of VFA
- Norming of the gas yield (0°C, 1013 hPa)
- Watersteam in gas has to be removed

Reference material - standard

- Control of the digestion process by a well known substrate
- microcrystalline cellulose, maybe supplemented by an additional in-house reference sample.
- Cellulose:
 - Gas output of 745 ±10 % I_N per kg oDM must be maintained
 - Methane output 375 ± 10% I_N per kg oDM

UNIVERSITÄT HOHENHEIM

Method: residual methane potential

- To gather a representative sample from the overflow of the last gas tight digester
- Digester cascades can be probed (analyse the influence of HRT on degredation rate)
- Analysing of: DM-, oDM-content, pH-value, VFA
- Inkubation of 3 replications (without inokulum addition)
- Two digestion temperatures are used
 - Mesophilic range: 37 ± 1°C (residual methane potential)
 - Psychrophilic range: 20 ± 1°C (methane emission potential)
- Duration of incubation: 60 d

UNIVERSITÄT HOHENHEIM

Residual methane potential – evaluation

Specific methane yield per kg VS in the digestate will be calculated

[NI methane / kg VS in the digestate sample] standardized: 1013 hPa, 273,15 K

Reference to real gas production of the investigated biogas plant

[% residual methane potential, RMP]

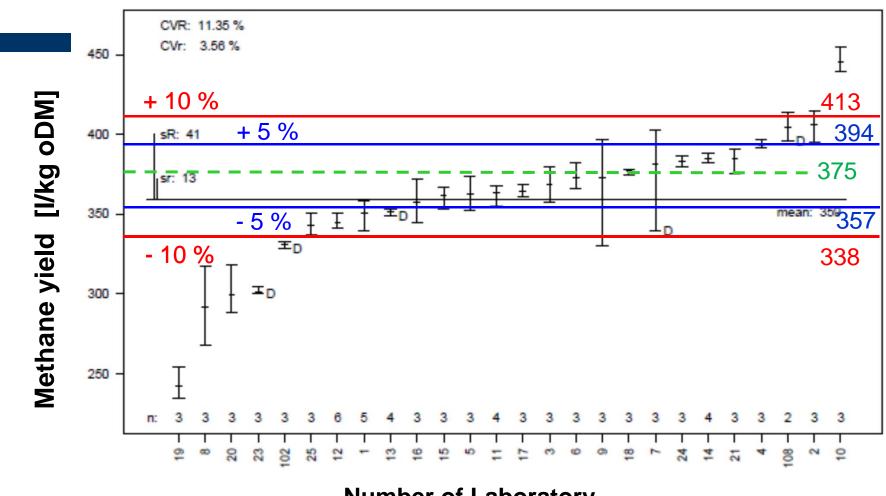
Necessary, to get measured data from the observed biogas plant

$$RMP = \frac{V_{RG}}{V_{BGP}} * 100 \quad [\%]$$

RMP residual methane potential

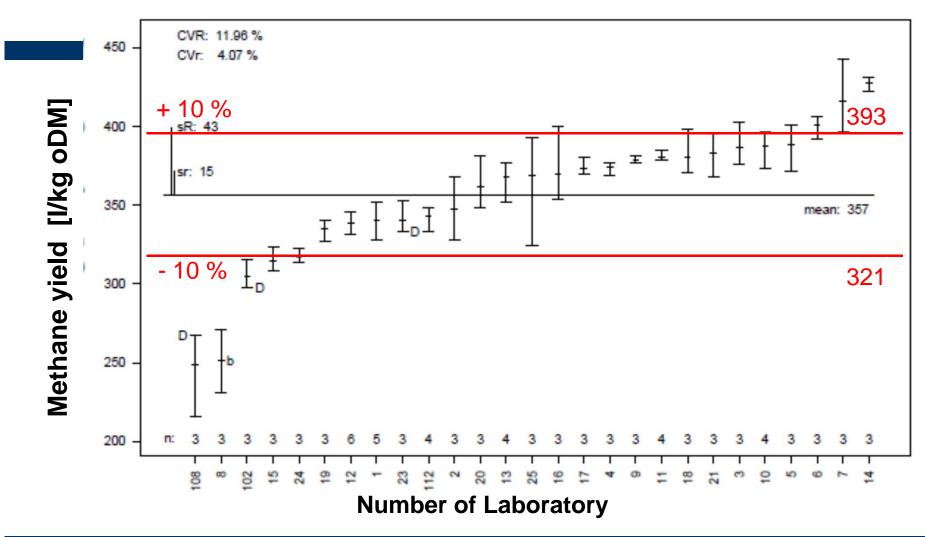
 V_{RG} volume of residual gas analysis $V_{RG\Delta}$ volume of methane of the plant

Measuring concept for the biogas measuring program (BMP III)


Round robin test for protection of the research quality

- Round robin tests at KTBL together with VDLUFA-NIRS GmbH since 2006
- 2006 (17 Labore), 2016 (30 Labore)
- Intensive error analysis and discussion of the participants to improve the quality of results
- New european Test started in 2016

Round robin test with microcristalline cellulose



Number of Laboratory

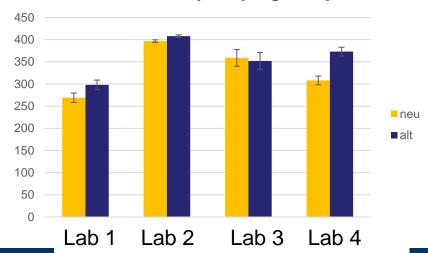
Round robin test with maize silage

Improved quality of Round robin test results over the time

Cellulose	2006	2007	2008	2011	2013	2014	2015
Nr. laboratories	16	19	27	31	28	28	24
Gas yield [m³/kg oDM]	742	724	700	736	729	728	725
CV_r	2,9%	3,4%	4,3%	3,0%	2,2%	1,9%	2,2%
CV_R	17,0%	10,0%	8,0%	4,5%	4,9%	4,5%	6,1%
Methane yield [m³/kg oDM]	386	358	358	373	369	359	358
CV_r	3,8%	4,2%	4,9%	3,5%	2,4%	2,8%	3,1%
CV_R	19,5%	12,8%	8,4%	9,7%	7,0%	7,8%	7,0%

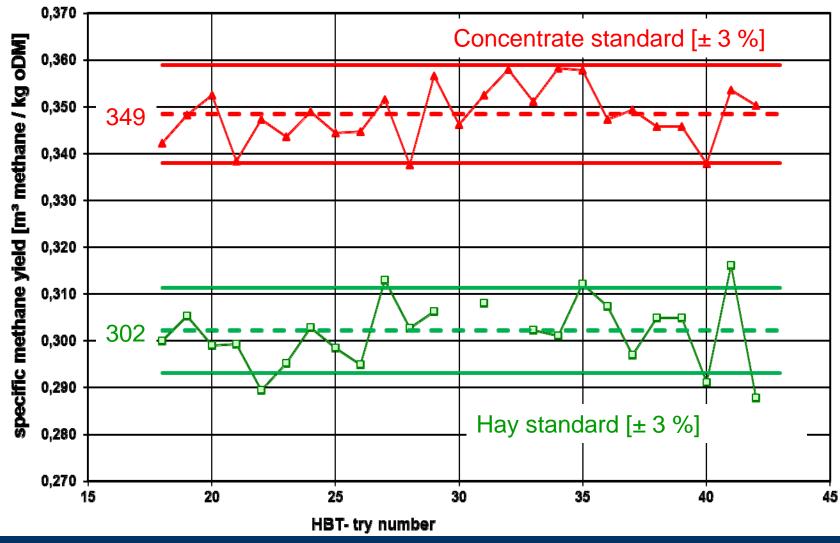

UNIVERSITÄT HOHENHEIM

Internal round robin test – BMP III



Maize silage, dried and grinded

- Deviations
- Cause analysis
- Inoculum?
- Test equipment?
- Calculation mistake?

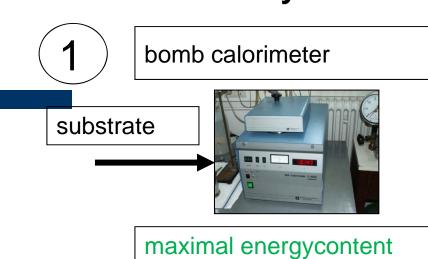


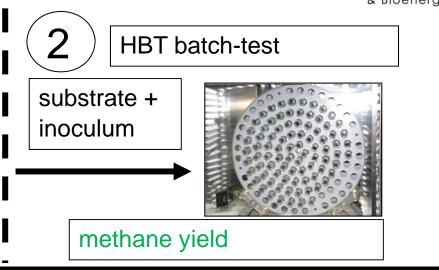
Standard substrates in Batch tests [strict requirements – only ± 3% deviation]

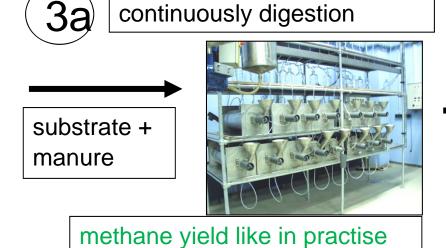
Planned Round robin test in the BMP III - program

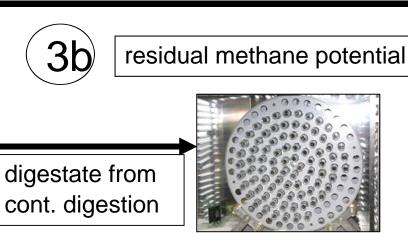
Schedule

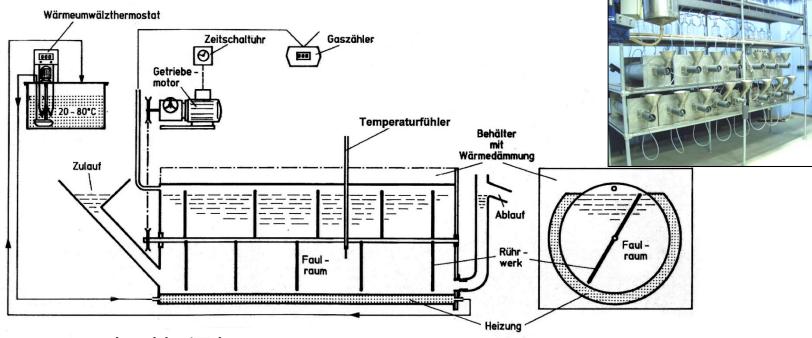
- Use of all inocula of 4 partners (+ starving out inoculum)
- Substrates:
 - Concentrate
 - Microcristalline cellulose
 - Dried maize silage
 - Fat-rich fodder
- Variants with trace elements
- 6 replications of each variant




Measuring concept for the biogas measuring program (BMP III)




Balance study



residual methane potential

Mukengele, Ciza, Oechsner 2006

Continuously laboratory biogas test

15 digester, each with 17 l

Substrate: maize silage, crushed wheat grain,

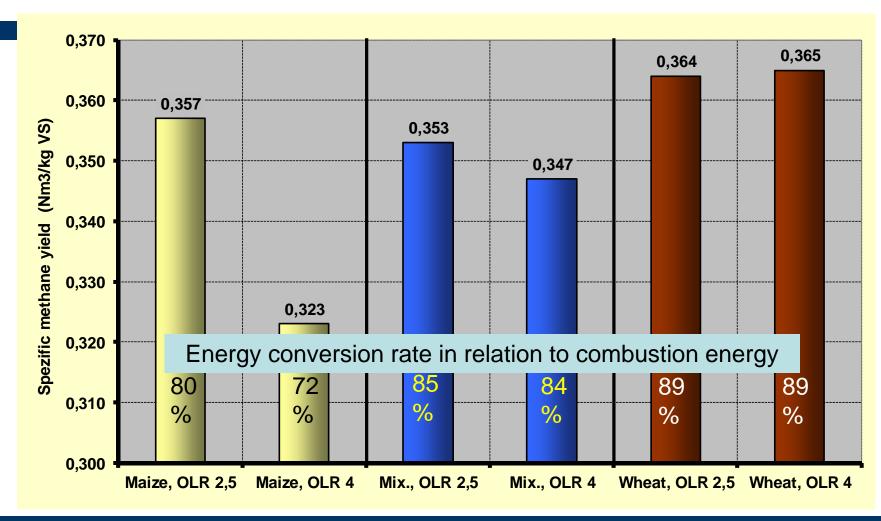
mixture of both (1:1)

Digestion temperature: mesophilic, 37°C ± 1°C

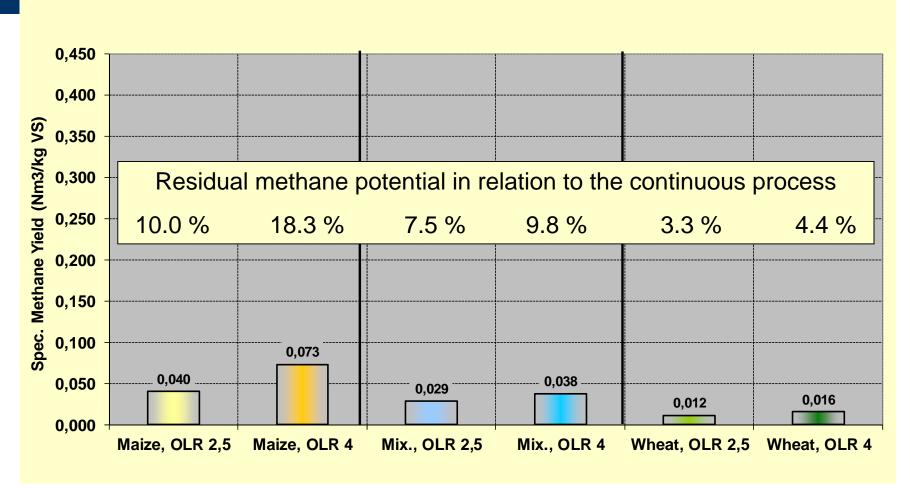
OLR: 2.5 respetively 4.0 kg VS/m3*d

HRT: 35 days

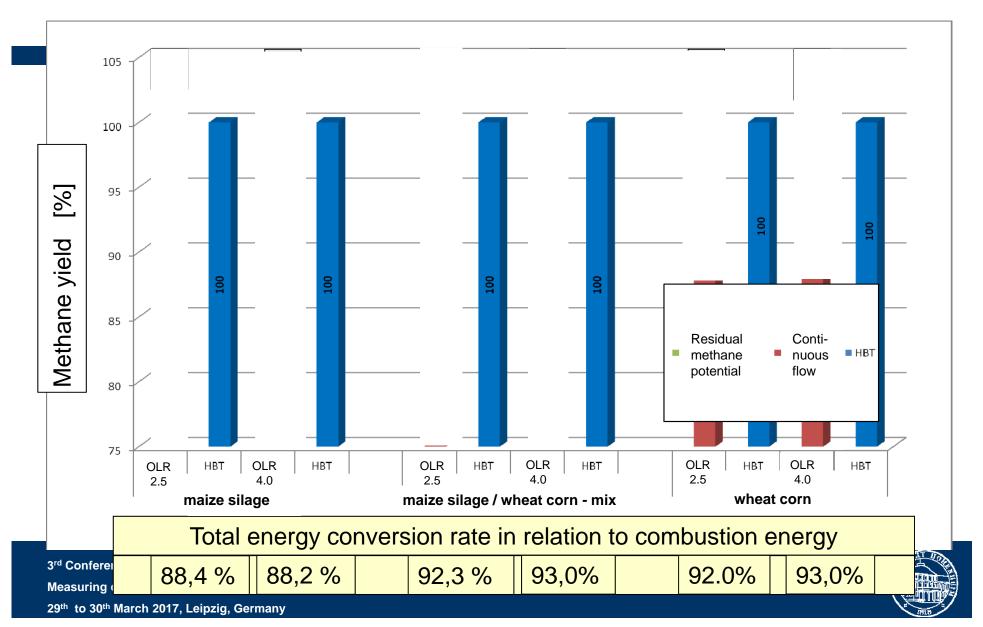
Duration: 123 days


2 replications

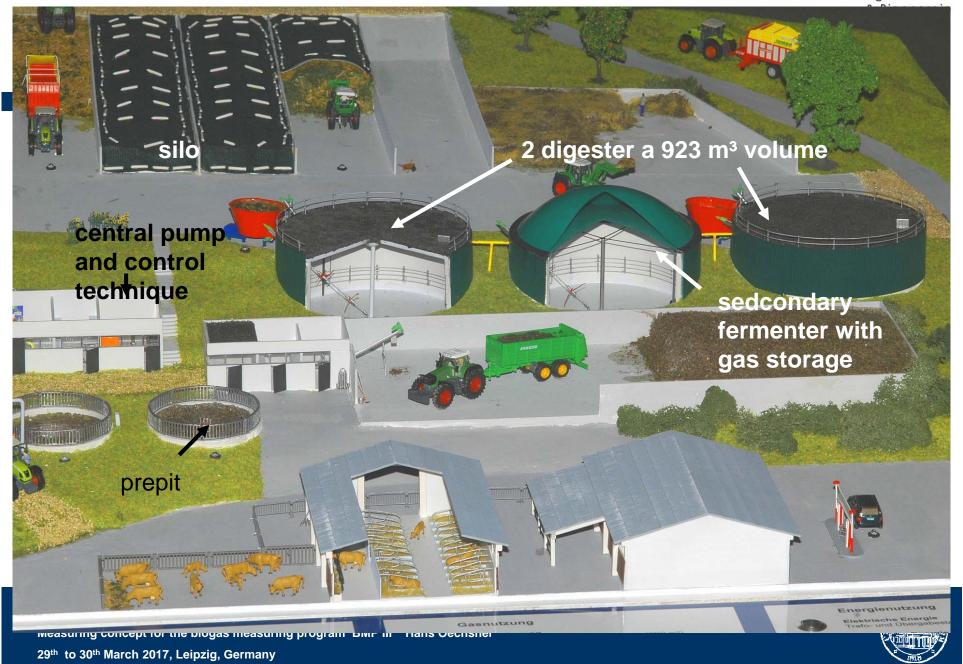
Methane yield at continuous digestion in laboratory



Methane yield at continuous digestion in laboratory - digestate

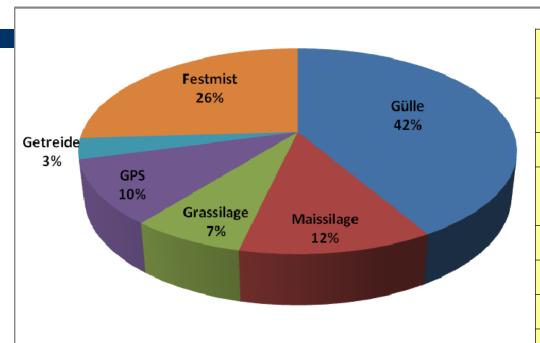


Comparison of results from bach- and continuously running laboratory digester



Contrast of p	rast of procedures Batch - Practise LANDESANSTALT für Agrartechnik & Bioenergie				
Paramater Batchversuch		Praxis-Biogasanlage			
Digostowyskyma	400 1 451	0000			

	Paramater	Batchversuch	Praxis-Biogasanlage	
	Digestervolume	100 ml – 15 l	> 2000 m³	
	Mode of operation	No exchange of material	Continuous feeding Recycling of digestate	
	Biological process	Steps of degradation are running in series	Steps of degradation are running parallel	
	Loadingrate	Up to 50 g oDM / I DV*d At the start of test	2 - 5 g oDM / I DV*d	
	Retention time	35 days	mostly > 100 days z.T. digester cascades	
	Substrate	Regular monosubstrates, representative, homogeneous	Mostly substrate mixtures different composition Changes in silo possible Volume of manure often not measured	
Measuring equipment		Precise weighing of inoculum and substrate possible Precise measuring of methane yield and -quality	Weighing units not exact Gascounter not calibrated Gasquality often not detected	



Full scale research biogas plant "Unterer Lindenhof"LANDESANSTALT

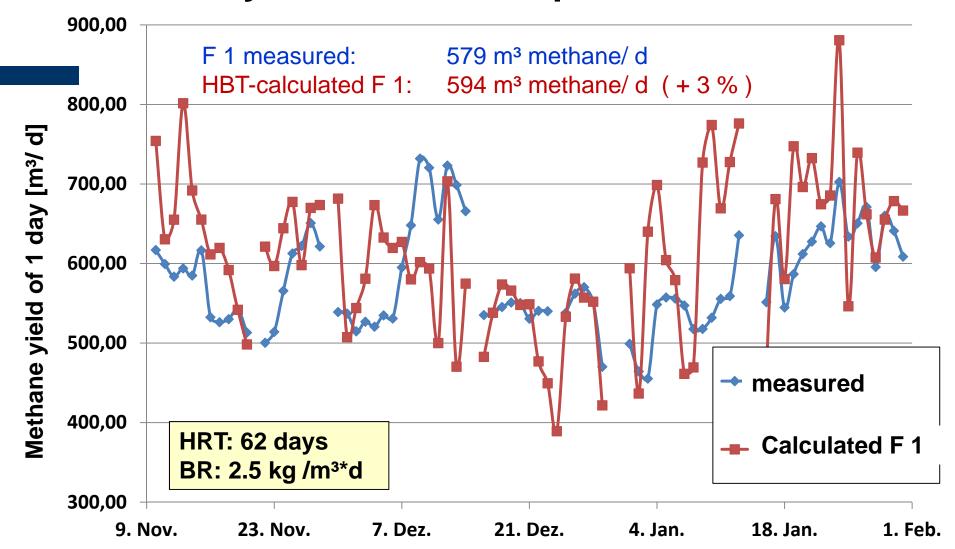
Conditions of biogas plant, digester 1

	Methane yield m ³ /kg oDM
Maize silage	0.376
Grass silage	0.351
Rye whole crop	
silage	0.336
Grains crushed	0.395
Horse manure	0.224
Solid manure	0.265
Liquid manure	0.180

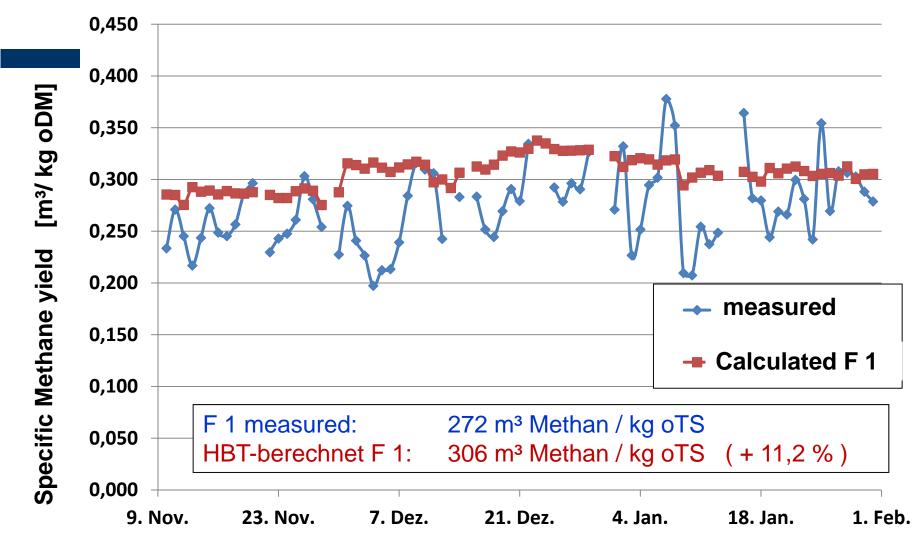
Hydraulic retention time: 62 Tage

Loading rate: 2.5 kg /m^{3*}d

feeding: 12 x per d


Sampling of DM, oDMt: each week

Methane yield test: each month



Methane yield in full scale plant

Specific Methane yield in full scale plant

Conclusions

- BMP III will demonstrate the state of the art with 60 modern biogas plants
- A great number of measuring parameters are used regularly
- It is essential to ensure the quality of this parameters
- With the cross-sectional topics we will optimise the measuring methods for better prediction of balance parameters
- Examinations show that laboratory results are relatively good transferable to full scale
- But the methods must be improved continuously
- Exact weighing, measuring of gas volume and gas quality is difficult in full scale plants
- Substrate composition is changing continuously

UNIVERSITÄT HOHENHEIM

Staff of the State Institute for Agricultural Engineering and Bioenergy, March 2016

3rd Conference on Monitoring and Process Control of Anaerobic Digestion Plants Measuring concept for the biogas measuring program BMP III Hans Oechsner 29th to 30th March 2017, Leipzig, Germany

UNIVERSITÄT HOHENHEIM

