

What you can expect today!

Dr. Frank Termer Head of Software

Bitkom e.V.

Albrechtstraße 10 10117 Berlin

E f.termer@bitkom.org T 030 275 76 232 @Bitkom_Software

- What are we talking about?
- From ad-hoc value chains to API-based software ecosystems.
- What is already done with OpenData today?
- Opportunities and risks with OpenData as a "prosumer".
- Central statements of the Open Data Manifesto.

Economic potential of Open Data

Total Market Size Open Data EU28+

Open Data – Try a definition

 Open Data is data that can be freely used, modiefied and shared by anyone – the only restriction is the obligation to name the author

- Open Data is
 - machine readable data
 - with open licence
 - without fees
 - mixing an sharing is allowed
 - can also commercially used

Industrialisation in 5 steps (1/5)

Ad-hoc value chain

manufactory

Sächsische Porzellanmanufaktur im 17. Jh.

From ad-hoc value chains to manufactories

Before:

- Distributed producers of different / Intermediate products
- Different interfaces, changing qualities, changing products
- Difficult control

After:

- Summary of different crafts to a workhouse with a common goal setting
- Modularization and specialization of the "individual" disciplines to defined interfaces
- Stable quality of a product

Industrialisation in 5 steps (2/5)

factory

Montagefabrik Bell Aircraft (1940er)

From manufactory to factory

Before:

- Primary manual production activities
- "Social" interfaces inside
- No clear separation between "living" and "working"
- End quality focus with plenty of compensation clearance inside
- Nearly no investment needed

After:

- High automation. "Formal interfaces" inside
- High presence obligation during work
- End and intermediate quality focus (quality goals)
- Increasingly important: high investment

Industrialisation in 5 steps (3/5)

IT-using company

Workplace with data collection, 1987

From the factory to the IT-using company

- Before:
 - High personnel expenses
 - Hardly any productivity gains are possible
 - High value creation depth in your own company
- After:
 - Use of IT as business support
 - No customer transparency to the outside
 - Efficiency increase for the product produced
 - Increasing external expertise in the form of IT products

Industrialisation in 5 steps (4/5)

companies as parts of a software ecosystem

modern IT-workplace, today

From IT-using company to companies as part of a software ecosystem

- Before:
 - Low networking of IT
 - Complex administration for? Purchased parts
 - Severe innovation
- After:
 - Core competency focus
 - Black box view of ingredients (XaaS)
 - High innovative capacity
 - Continuous modular improvement

Industrialisation in 5 steps (5/5)

companies as parts of a software ecosystem

Develop new markets with software ecosystems

- Opening up internal IT
 - for additional sales markets
 - for intermediates
- Provision of interfaces to participate in other software ecosystems (Community)
- IT harmonisation through the break-up? The view of "inside" and "outside": everything? Is inside and outside at the same time

The 5 stages of industrialization towards software ecosystems

Definition: API-based software ecosystems

- API-based software ecosystems consist of lightweight interfaces as well as a global technology stack which makes them easy to use.
 - The *consumer* can use the sophisticated interface orchestration effectively for their own value creation in order to efficiently implement their own market advantages.
 - The provider can offer existing and new (intermediate) products to existing and new customers efficiently via the platform.

A participant in the API-based software ecosystem usually appears as a *prosumer*.

Open Data – two important roles

Open Data with practical examples

agriculture

health

logistics

A field experiment: Workshop "Requirements of the industries for Open Data"

- Open Data Role
 - Consumer
 - Provider

- any Open Data application
 - knows chances
 - knows risks

Results of the Workshop

		Chances	Risiks
	Consumer	 Companies: Increasing productivity, process optimization, refinement possibilities Consumer: Participation, new benefits both: relationships 	 Quality of the data Liability Stability (Highness, Offer) Durable cost-freeness not secured Service Level Coverage
15	Provider	 Innovation Collaboration and cooperation x2x Increasing efficiency, process optimization Increasing data quality, internal data availability image gain Recruiting 	 transparency Technical foundations, security Cost / benefit expectations Know-how disclosure data sovereignty liability

In 5 steps to API-Provider and -Consumer

- strategy setting
 - Positioning in industrialization context
 - Business modeling
 - Change Management Planning
- Technical Drawing
 - Additional infrastructure
 - Adaptation of existing infrastructure
 - Secure, cross-company communication
- 3. API-fication
 - Outward: Definition of services
 - Inside: implementation and integration
 - Proof protection

In 5 steps to API-Provider and -Consumer

Marketing

- To the outside: For product catalog
- According to halbauen: For developers and third parties
- Inside: for support and community

5. Management

- Monitoring the use
- Control and adjustments
- Review of strategy

One API, two roles, many benefits

7 benefits as a provider

- Additional sales markets
- 2. Additional customer
- 3. Additional (intermediate) products
- 4. Utilization of external communities
- Technology Leader
- 6. Internal reuse
- 7. Higher brand penetration

7 benefits as a customer

- 1. Core competency focus
- 2. "Best-of-Breed" Orchestration
- 3. Shorter time-to-market
- 4. "Hire & Fire" from APIs
- 5. API Competition
- 6. Easy SLA management
- 7. Technology Leader

Central statements of the Open Data Manifesto

Open Data

- ... creates interest and trust
- ... accelerates modernization and innovation
- ... creates space for value-added services for all
- ... can be realized safely and effectively
- ... democratizes data integrity for open ecosystems

contact

Bitkom e.V.

Albrechtstraße 10 10117 Berlin

T 030 275 76 0 **F** 030 275 76 400

@bitkom_Software

bitkom@bitkom.org www.bitkom.org

Dr. Frank Termer Head of Software

E f.termer@bitkom.org T 030 275 76 232

