

Introduction

- Earth Observation (EO) Datasets (incl derived Products) play an important role for decision making processes
 - New satellite programs recently setup: EU/ESA (Copernicus), EUMETSAT (Meteosat, MetOp)...
 - > worldwide observations with high temporal repetition rates -> real Big Data!
- EO Datasets published as Open Data but often through special Portals - stored in Archives
- For users not knowing about the different portals it is hard to find, discover and get access to it

Introduction

- Definition: EO Collections represent set of EO Datasets sharing a common specification
- For usage of product it can either be downloaded...
 - > Requires: register, order, download, process (format conversions, re-projections,...) the data
- OR for an easier access data is provided by Access and View Services, e.g. OGC WMS _____
- Collections, Products and Services are usually described and indexed based on specific metadata models and encodings (e.g. ISO 19115 or 19119)

EUMETSAT SEVIRI data & Forest Fires WMS' used with Esri ArcMap

Introduction – Linked Open Data

- Metadata indexed and searched via specific Catalogue Services (e.g. OGC CSW)
 - > to Google & Co: metadata hidden
 - > Require specific clients
 - > Access to metadata just following web links is mostly not possible.
- For improving the situation: technologies related to Linked Open Data are promising
 - > starting at a piece of Linked Data, and follow links to other pieces
 - > link EO data and mainstream web data
 - > Can be used on top of existing SDI

Linked Open Data for Earth Observation

- Basic technologies and best practices for LOD in EO:
 - > unique persistent HTTP URIs for EO Datasets
 - > provision of EO data (upon de-referencing) in different formats
 - > ATOM / (Geo)JSON metadata
 - > using well known (e.g. GeoNames) or well-designed vocabularies
 - > HTML page
 - > binary data
 - maps in tiled form suitable for display in zoomable maps (WMTS)
 - > Link EO data to other resources to integrate with the web of data.

Searching with mainstream Search Engines

- Alternative to getting to data via links: searching with Google & Co
 - > Search engines index web pages (HTML) -----
 - > should provide metadata and links to service endpoints
 - > schema.org annotated: to improve search results /SEO Reduce applications of the search results /SEO Reduce applicatio
 - > landing page: to enable crawlers to find web pages
 - > Set of EO collections as landing page: ----
 - > point to EO datasets
 - > paging should be provided
 - > Set of links to web pages can also be added to a sitemap

From: EUMETSAT Product Navigator

Searching with mainstream Search Engines

- But in case of Mio of similar datasets (new permanently coming in) ... approach is no more an option:
 - > not possible to force Google to index data as needed
 - > indexing takes too long: months / years or not possible...
 - > Domain specific vocabulars to index/search not supported
- Approach:
 - > let just collections be indexed by Google
 - > use specialized search engine for indexing / filtering Datasets

OpenSearch

- Possible Solution: OpenSearch (OS)
 - > REST-Style, web compatible API
 - > providing key-value parameters to constrain the search
 - > OS engines provide description documents (OSDD) used by clients
 - > include URL template per response format with parameters to be replaced by client
 - > usable by browser plugIns via Autodiscovery

```
<link rel="search" type="application/opensearchdescription+xml"
href="http://...osdd.xml" title="EUMETSAT Product Navigator..." />
```

> ...or by Search clients which can easily be created from OSDD

Search .

Search with:

Google Search

Add "EUMETSAT Product Navigator - searc...

EUMETSAT Product Navigator - search satellite metadata resources http://navigator.eumetsat.int/discovery/os-description.xml

OpenSearch – Responses

> Results: can be returned as HTML, Atom,
RDF.

KML, JSON....

- > Resulset: container with search entries/
- Container includes information about current search and means for pagination
- > Entries represent EO Datasets
 - element values mapped from original metadata
 - links provide means for linking to external information, e.g. to metadata details (@rel="via")
- > Results can be aggregated by clients and e.g. rendered in browser

OpenSearch – OGC Extensions for Geo/EO

- OpenSearch is extendable:
 - > by query parameters (in addition to those provided in OS 1.1 namespace, e.g. searchTerm)
 - > by additional search response formats
- OGC 10-032r8: OGC OpenSearch Geo and Time Extensions
 - > parameters and operators to define geographic and temporal constraints
 - > Example URL template: http://server...?q={searchTerms}&g={geo:geometry?}&r={geo:relation}
 - > Example request: http://...?q=wind&g=POLYGON((0.582 40.496,, 0.582 40.496))&r=disjoint
 - > Atom response format defining constraints for the elements

OpenSearch – OGC Extensions for Geo/EO

- OGC 13-026r9: OGC OpenSearch Extension for Earth Observation (OpenSearch-EO)
 - > Search for EO Collections and EO Datasets (build upon 10-032 last slide)
 - > EO specific parameters, e.g. platform, orbitType, sensorType, cloudCover,...
 - > semantic defined by mappings to EO MD models (e.g. OGC 10-157)
 - > Defines Atom response format with constraints plus:
 - links with defined semantic ("rel" attribute):
 - > e.g. 2-step-search, source of entry, alternate MD formats, docu, images,.
 - > service or online content offering for entries targeting OGC clients
 - > Used by Aggregators: CEOS/CWIC, ESA/FEDEO, EUM/EOP, NASA...

GeoJSON / JSON-LD

- Problem: Atom not ideal for web clients and developers, poor mass market adoption

- > JSON: text-based, leightweight, key/value pairs, derived from JavaScript
- > GeoJSON: format to encode simple geogr. features using JSON
 - > supported by many js-libraries
- > But: No commonly agreed vocabulary and not LD

- Solution: JSON-LD (JSON-based format to serialize Linked Data)
 - > way to combine web-based environments and linked data

> implements: 5 star SDW-BP

GeoJSON / JSON-LD

- > In addition to JSON, JSON-LD introduces:
 - > Semantically enriched properties => identified by an IRI
 - > defines the vocabulary
 - > @id keyword: refer to JSON object on different site by IRI
 - > JSON-LD introduces a @context
 - > addresses issue of verbose documents by mapping terms to IRIs
 - > a way to associate datatypes with values (e.g. dateTime)
- > serializable as RDF: can be used with SPARQL
- > next generation REST for hypermedia driven systems (HATEOAS)

```
"@context": {
  "gj": "https://purl.org/geojson/vocab#",
  "dct": "http://purl.org/dc/terms/"
  "qda" : "http://schemas.google.com/g/2005".
  "geometry" : "gj:geometry",
  "coordinates": "gj:coordinates",
  "Polygon" : "gj:Polygon",
  "properties" : "gj:properties".
  "updated": |
     "@id": "dct:modified",
     "@type": "http://www.w3.org/2001/#XMLSchema#dateTime
  "bbox": {
    "@container": "@list",
     "@id": "gj:bbox"
  "features": {
     "@container": "@set",
     "@id": "qj:features"
  "type" : "@type",
  "id" : "@id"
  "Feature": "gj:Feature",
  "FeatureCollection": "gi:FeatureCollection"
"type" : "FeatureCollection",
"id": "http://rs211980.rs.hosteurope.de/.../eopos?dtstart=...".
"bbox" : [ -67.5, -67.5, 67.5, 67.5],
"features": [ {
  "type" : "Feature",
  "id" : "urn:ogc:def:EOP:EUM:acronym:MSGCSKR:...".
  "geometry": {
     "type" : "Polygon",
     "coordinates": [[[-2.682513, 63.261372], ...]]
  "properties": {
     "updated": "2016-08-04T00:45:00Z",
```

OpenSearch – OGC GeoJSON / JSON-LD response formats for EO

- OGC 17-074: OGC OpenSearch-EO GeoJSON (-LD) Response Encoding Standard
- OGC 17-003: OGC EO Dataset Metadata GeoJSON(-LD) Encoding Standard
 - > both define GeoJSON encoding as compaction through a context of the proposed JSON-LD encoding
 - > define properties with domain, range, namespace,...
 - > widely adopted vocabularies used DC, OGC, Atom,...
 - > 17-003: EO Vocabulary defined with RDF Schema:

```
cop:statusSubType a owl:DatatypeProperty;
    rdfs:label "statusSubType";
    dcterms:source "OGC 17-003"^^xsd:string;
    rdfs:comment """Refines the status of a product when the "status" is set to "ARCHIVED".
Possible values:
    "ON-LINE"
    "OFF-LINE".
    """;
    rdfs:domain eop:ProductInformation;
    rdfs:isDefinedBy eop:;
    rdfs:range xsd:string.
```

```
"@context": "http://www.opengis.net/spec/opensearcheo/geojson/1.0",
"@type" : "FeatureCollection".
"@id": "http://rs211980.rs.hosteurope.de/eo-csw-umarf/...",
"bbox" : [ -67.5, -67.5, 67.5, 67.5].
"properties": {
  "type" : "Properties",
  "title": "EUMETSAT EO Portal - EOPOS search response (geojson)",
  "subject": "http://www.eumetsat.int/concept/theme/climatologyMeteorologyAtmosphere".
  "totalResults": 3755.
  "features":
     "type": "Feature",
     "id": "MSGCSKR: fileid:EO:EUM:DAT:MSG:CSR:20160804004500MSG3MSGCSKR02EF00P
     "geometry": {
       "type" : "Polygon",
       "coordinates": [[[-2.682513, 63.261372], [-2.69574,61.997604] ...]]
  "properties": {
    "type" : "Properties",
     "kind" : "EarthObservation",
     "updated": "2016-08-04T00:45:00Z".
    "identifier": "MSGCSKR: fileid:EO:EUM:DAT:MSG:CSR:20160804004500MSG3MSGCSKR02EF00P
    "links": {
       "@type": "Links",
       "@context": { "type" : "atom:type" },
       "alternates" : [ {
            "@type" : "Link".
            "href": "http://rs211980.rs.hosteurope.de/eo-csw-umarf/servlet/csw?service=CSW-ebRIM8
            "type": "application/gml+xml;profile=http://www.opengis.net/spec/EOMPOM/1.1",
           "title": "Metadata (OGC O&M EOP Format)"
        } ].
       "data": [{
            "@type" : "Link".
            "href": "http://rs211980.rs.hosteurope.de/eo-download/servlet/download?service=DSEO&v
            "type" : "application/binary",
           "title": "Download"
       "previews": [{
            "@type" : "Link",
            "@context": { "type" : "atom:type" },
            "id": "http://navigator.eumetsat.int/smartEditor/preview/msgcsr.jpg",
            "type": "image/jpeg",
            "expression": "sample",
            "category": "http://www.opengis.net/spec/EOMPOM/1.0#THUMBNAIL"
```

OpenSearch – Outlook

- Problems with OpenSearch OSDD...
 - > XML based
 - > URL template not structured, string based
 - > Limited options especially for response definitions
- Need for a better concept for a service description:
 - > Better aligned with web clients and developers
 - > structured and more flexible
 - > existing tool support
- Possible Solution: OpenAPI 3.0
 - > Some points open: e.g. how to link parameters to predefined EO parameter definitions...

con terra

con terra – Gesellschaft für Angewandte Informationstechnologie mbH

Martin-Luther-King-Weg 24 48155 Münster Telefon +49 89 207 005 2200 info@conterra.de

Thank you!