
Linked Data architectural components
How-to attach linked data services to legacy infrastructure?

Daniel Martini, Mario Schmitz, Günter Engelhardt

Berlin, 27th of June, 2017

● Registered Association (non-profit):

 Funded ~ 2/3 by the german ministry for nutrition and agriculture

 ~ 400 members: experts from research, industry, extension…

 ~ 70 employees working in Darmstadt

 Managing lots of working groups, organizing expert workshops,

represented in other committees, maintaining an expert network

● Tasks:

 Knowledge transfer from research into agricultural practice

 Supporting policy decision making by expertises

 Evaluating new technologies: economics, ecological impact…

 Providing planning data (investment, production processes…) to

extension and farmers

● Role of Information Technology:

 Data acquisition: harvesting open data sources

 Data processing: calculating planning data from raw data

 Information provision: delivery to clients via ebooks, web, apps 3

Organization

Deliver KTBL planning data in human and machine readable form

alike:

● Machine classes: purchase prices, useful life, consumption of
supplies…

● Standard field work processes: working time, machines commonly
used under different regimes…

● Operating supplies: average prices, contents…

● Facilities and buildings: stables, milking machines and their properties

● …

to reach a broader audience and enable further processing within
software applications for the use of farmers, extension…

4

Goals and requirements

● There‘s data that wants to get shared available at an organization

● We want to comply to FAIR principles:

 Findable

 Accessible

 Interoperable

 Reusable

So we have to use standard specifications:

 RDF

 HTTP

 SPARQL

 …

● But alas, data exists within a legacy infrastructure

● What‘s in our toolbox to get it unlocked with the least effort possible?

5

Problem statement

● Every data structure can be converted to a directed graph with

relative ease

● Extensions can flexibly be implemented

Resource Description Framework (RDF):

Rich representation

Advantages when it comes to search, navigation and decision support

“A traditional relational database may tell you the average age of

everyone in this pub, but a graph database will tell you who is most

likely to buy you a beer.” Andreas Kollegger
8

Graph based data model

Subject Predicate Object

FarmerXY owns Machine0815

Machine0815 type tractor

Maschine0815 purchasePrice 83000 Euro

● No name properties. Recommendation:

“rdfs:label is an instance of rdf:Property that may be used to provide

a human-readable version of a resource's name.”

http://www.w3.org/TR/rdf-schema/

● Persons, addresses, phone numbers:

 vcard: http://www.w3.org/2006/vcard/ns#

 foaf: http://xmlns.com/foaf/0.1/

● Units and dimensions:

 QUDT: http://qudt.org

● Geospatial data:

 Geovocabulary: http://geovocab.org/

 GeoSPARQL: http://www.opengeospatial.org/standards/geosparql

● Prices, Products, etc.:

 Good Relations Ontology:

http://www.heppnetz.de/projects/goodrelations/
9

Step 1: Create vocabulary

Most important: reuse

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2006/vcard/ns
http://xmlns.com/foaf/0.1/
http://qudt.org/
http://geovocab.org/
http://www.opengeospatial.org/standards/geosparql
http://www.heppnetz.de/projects/goodrelations/

● It gets worse, if the „what“ needs to be represented as well:

„consumption 7.8 l diesel per h“, „fat content 35 g/l of milk“

● Three approaches to solving the problem:

1. data types

advantage: compact notation

disadvantage: deprives you of the usage of XML schema data types (e. g.

xsd:float) on the numerical value of the quantity

2. additonal ressource nodes in the graph

advantage: simplifies reasoning

disadvantage: difficult to represent properly in services

3. blank nodes

advantage: compact notation in different syntaxes, intuitive, possibility to

add further datatypes to values

disadvantage: not that easy to handle in reasoning 10

Problems and solution approaches

The RDF data model does
not support n-ary relations

Representation of physical
quantities requires n-ary
relations:
value and dimension form
an unseparable unit

11

Infrastructure: What‘s needed?

service
HTTP
requests

serialize in
semantic
web formats

pull data out
of a relational
data base

efficiently query
a graph based
data model

● Relational-to-graph/RDF mapping tool

● Triple/quad store, SPARQL query engine

● Serializer/Linked data server component

Component Alternatives Decision

Relational-to-
graph/RDF mapping
tool

DB2triples
Virtuoso
R2RML Parser
Xsparql
Karma
…

D2RQ:
- Supports Oracle data bases via

JDBC
- Experience was available from a

project

Triple/quad store,
SPARQL query engine

Sesame
Stardog
4Store
Owlim
…

Jena Fuseki:
- Easy to use and configure
- (relatively) lightweight

Serializer/
linked data server
component

D2R server
Pubby
Callimachus
Apache Marmotta
Virtuoso
…

ELDA:
- Supports different serialization

formats
- Allows adjustment of the HTML

layout via velocity templates

Evaluation

13

Architecture

Mapping-
Description

„traditional“ KTBL-
Applications (e. g. FeldAV)

Browser

Desktop

Apps

KTBL-Oracle
data base

Apache

• Proxy
• Content

Negotiation
• Static Content
• 303 Redirect

Fuseki

• SPARQL
Endpoint

Jena TDB

• Graph
Storage

SearchHaus

• Semantic
Search

ELDA

• Linked Data
API Server

• Serialization:
Turtle, XML,
JSON

• Presentation:
HTML,
Velocity, XSLT

D2RQ

• Relational-
to-Graph-
Mapping

Service-
Description

Website

Full text publications

Website: http://www.epimorphics.com/web/tools/elda.html

Source code: https://github.com/epimorphics/elda

● used e. g. by data.gov.co.uk

● an implementation of the Linked Data API as specified at:

https://github.com/UKGovLD/linked-data-api

● using the Apache velocity

template engine

http://velocity.apache.org

● one template for the whole server:

templates can become rather

complex, if you want to do path

specific rendering or localization

● no native content negotiation:

that requires Apache upfront

14

ELDA

Image source:
https://github.com/UKGovLD/linked-data-
api/blob/wiki/API_Processing_Model.md

http://www.epimorphics.com/web/tools/elda.html
https://github.com/epimorphics/elda
http://velocity.apache.org/

Next Generation Data API in Go

● Allow for differing HTML Renderings and SPARQL backend queries

depending upon URL path requested and Accept*-headers:

 template driven HTML frontend

 SPARQL query templates with variable expansion

 Each URL path can have its own HTML as well as SPARQL

templates

● Content-Negotiation (HTTP Accept: header + filename suffix)

● Frontend Localization Support (HTTP Accept-Language: header + LDA

_lang parameter)

● Support most of the additional query parameters in the LDA spec

● Replace LDA spec JSON compliant serialization by JSON-LD as

specified by the recent W3C recommendation
15

Dangg

http://golang.org

Created by some Google Engineers and former AT&T/Bell

Labs Unix System Laboratories employees around 2009:

Rob Pike, Robert Griesemer, Ken Thompson

Inspired by their former work at Bell Labs: Plan9

● Features:

 The best of three worlds: Python, C/C++, Java

 Compiled language with a clean, portable compiler design

 Consistent syntax

 Easy to use build and packaging framework included

 Adjusted to modern hardware architectures: concurrency, networking

 Performant (~ C++)

 Non-object-oriented, but has interfaces and methods

 Static typing, pointers but no pointer arithmetic, function closures…

● Used in some high profile, large-scale projects:

 Soundcloud‘s Prometheus monitoring system: http://prometheus.io

 Google‘s download server: http://dl.google.com serving

Chrome, Android SDK, Earth… downloads 16

Why Go?

Designed by Renee French
http://reneefrench.blogspot.com/
licensed under the Creative
Commons 3.0 Attributions license.

http://golang.org/
http://prometheus.io/
http://dl.google.com/

17

Architektur LOD-Service am KTBL

Mapping-
Beschreibung

„traditionelle“ KTBL-
Anwendungen (z. B. FeldAV)

Browser

Desktop

Apps

KTBL-Oracle
Datenbank

Apache

• Proxy

Jena TDB

• Graphen-
Speicher

D2RQ

• Relational-
nach-Graphen-
Mapping

Service-
Beschreibung

Volltexte

dangg

• Serialisierung:
Turtle, N-Triples

• Content Negotiation:
Format und Sprache

• HTML-Präsentation
• 303 Redirect und #-

basierte Auslieferung

Fuseki

• SPARQL
Endpoint

SearchHaus

• Semantische
Suche

Website

Suchmaschinen

Entscheidungs-
unterstützung,
Softwareagenten

● Done:

 Content Negotiation

 Per-Endpoint-Templates: SPARQL and HTML (standard go template

engine: https://golang.org/pkg/html/template/)

● Not yet:

 JSON-LD

 IP-based logging

 Configuration files

 Complete LDA/LDP support

● In-memory label processing:

 Speed (avg. 8 ms page load time -> huge improvement vs. ELDA)

 Might require redesign with datasets with lots of labels

● ~2000 SLOC

18

Dangg: features so far

● „Item“ struct:

 Either a Subject/Object or a Predicate in a RDF triple

● Item struct fields:

 P (Parent Node)

 T (Node Type at parse time: subj/obj or pred)

 L (human readable Label, filled from in-memory map)

 U (URL)

 V (Value: only filled for literals)

 D (Dimension: only filled for physical quantities, requires units to

be represented as blank nodes)

 N (Next Level of Items)

● All fields referencable from HTML templates

● Can feed any RDF data to it, as long as units are represented using

the blank node strategy

19

Dangg: Core data structure

20

Linked Data: Entitätenansicht

● Free tools, not too difficult to setup are available

 Usually, the problem exists between keyboard and chair

 There are rough edges

 Replacing certain components by own code is doable, when you

are fluent in graph based data models

Alternatives:

1. Buy an all in-one-solution with a service contract

2. Program each and every data service from scratch

21

Conclusions

Thanks for listening!

Questions?

Contact: d.martini@ktbl.de

22

