
Linked Data architectural components
How-to attach linked data services to legacy infrastructure?

Daniel Martini, Mario Schmitz, Günter Engelhardt

Berlin, 27th of June, 2017

● Registered Association (non-profit):

 Funded ~ 2/3 by the german ministry for nutrition and agriculture

 ~ 400 members: experts from research, industry, extension…

 ~ 70 employees working in Darmstadt

 Managing lots of working groups, organizing expert workshops,

represented in other committees, maintaining an expert network

● Tasks:

 Knowledge transfer from research into agricultural practice

 Supporting policy decision making by expertises

 Evaluating new technologies: economics, ecological impact…

 Providing planning data (investment, production processes…) to

extension and farmers

● Role of Information Technology:

 Data acquisition: harvesting open data sources

 Data processing: calculating planning data from raw data

 Information provision: delivery to clients via ebooks, web, apps 3

Organization

Deliver KTBL planning data in human and machine readable form

alike:

● Machine classes: purchase prices, useful life, consumption of
supplies…

● Standard field work processes: working time, machines commonly
used under different regimes…

● Operating supplies: average prices, contents…

● Facilities and buildings: stables, milking machines and their properties

● …

to reach a broader audience and enable further processing within
software applications for the use of farmers, extension…

4

Goals and requirements

● There‘s data that wants to get shared available at an organization

● We want to comply to FAIR principles:

 Findable

 Accessible

 Interoperable

 Reusable

So we have to use standard specifications:

 RDF

 HTTP

 SPARQL

 …

● But alas, data exists within a legacy infrastructure

● What‘s in our toolbox to get it unlocked with the least effort possible?

5

Problem statement

● Every data structure can be converted to a directed graph with

relative ease

● Extensions can flexibly be implemented

Resource Description Framework (RDF):

Rich representation

Advantages when it comes to search, navigation and decision support

“A traditional relational database may tell you the average age of

everyone in this pub, but a graph database will tell you who is most

likely to buy you a beer.” Andreas Kollegger
8

Graph based data model

Subject Predicate Object

FarmerXY owns Machine0815

Machine0815 type tractor

Maschine0815 purchasePrice 83000 Euro

● No name properties. Recommendation:

“rdfs:label is an instance of rdf:Property that may be used to provide

a human-readable version of a resource's name.”

http://www.w3.org/TR/rdf-schema/

● Persons, addresses, phone numbers:

 vcard: http://www.w3.org/2006/vcard/ns#

 foaf: http://xmlns.com/foaf/0.1/

● Units and dimensions:

 QUDT: http://qudt.org

● Geospatial data:

 Geovocabulary: http://geovocab.org/

 GeoSPARQL: http://www.opengeospatial.org/standards/geosparql

● Prices, Products, etc.:

 Good Relations Ontology:

http://www.heppnetz.de/projects/goodrelations/
9

Step 1: Create vocabulary

Most important: reuse

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2006/vcard/ns
http://xmlns.com/foaf/0.1/
http://qudt.org/
http://geovocab.org/
http://www.opengeospatial.org/standards/geosparql
http://www.heppnetz.de/projects/goodrelations/

● It gets worse, if the „what“ needs to be represented as well:

„consumption 7.8 l diesel per h“, „fat content 35 g/l of milk“

● Three approaches to solving the problem:

1. data types

advantage: compact notation

disadvantage: deprives you of the usage of XML schema data types (e. g.

xsd:float) on the numerical value of the quantity

2. additonal ressource nodes in the graph

advantage: simplifies reasoning

disadvantage: difficult to represent properly in services

3. blank nodes

advantage: compact notation in different syntaxes, intuitive, possibility to

add further datatypes to values

disadvantage: not that easy to handle in reasoning 10

Problems and solution approaches

The RDF data model does
not support n-ary relations

Representation of physical
quantities requires n-ary
relations:
value and dimension form
an unseparable unit

11

Infrastructure: What‘s needed?

service
HTTP
requests

serialize in
semantic
web formats

pull data out
of a relational
data base

efficiently query
a graph based
data model

● Relational-to-graph/RDF mapping tool

● Triple/quad store, SPARQL query engine

● Serializer/Linked data server component

Component Alternatives Decision

Relational-to-
graph/RDF mapping
tool

DB2triples
Virtuoso
R2RML Parser
Xsparql
Karma
…

D2RQ:
- Supports Oracle data bases via

JDBC
- Experience was available from a

project

Triple/quad store,
SPARQL query engine

Sesame
Stardog
4Store
Owlim
…

Jena Fuseki:
- Easy to use and configure
- (relatively) lightweight

Serializer/
linked data server
component

D2R server
Pubby
Callimachus
Apache Marmotta
Virtuoso
…

ELDA:
- Supports different serialization

formats
- Allows adjustment of the HTML

layout via velocity templates

Evaluation

13

Architecture

Mapping-
Description

„traditional“ KTBL-
Applications (e. g. FeldAV)

Browser

Desktop

Apps

KTBL-Oracle
data base

Apache

• Proxy
• Content

Negotiation
• Static Content
• 303 Redirect

Fuseki

• SPARQL
Endpoint

Jena TDB

• Graph
Storage

SearchHaus

• Semantic
Search

ELDA

• Linked Data
API Server

• Serialization:
Turtle, XML,
JSON

• Presentation:
HTML,
Velocity, XSLT

D2RQ

• Relational-
to-Graph-
Mapping

Service-
Description

Website

Full text publications

Website: http://www.epimorphics.com/web/tools/elda.html

Source code: https://github.com/epimorphics/elda

● used e. g. by data.gov.co.uk

● an implementation of the Linked Data API as specified at:

https://github.com/UKGovLD/linked-data-api

● using the Apache velocity

template engine

http://velocity.apache.org

● one template for the whole server:

templates can become rather

complex, if you want to do path

specific rendering or localization

● no native content negotiation:

that requires Apache upfront

14

ELDA

Image source:
https://github.com/UKGovLD/linked-data-
api/blob/wiki/API_Processing_Model.md

http://www.epimorphics.com/web/tools/elda.html
https://github.com/epimorphics/elda
http://velocity.apache.org/

Next Generation Data API in Go

● Allow for differing HTML Renderings and SPARQL backend queries

depending upon URL path requested and Accept*-headers:

 template driven HTML frontend

 SPARQL query templates with variable expansion

 Each URL path can have its own HTML as well as SPARQL

templates

● Content-Negotiation (HTTP Accept: header + filename suffix)

● Frontend Localization Support (HTTP Accept-Language: header + LDA

_lang parameter)

● Support most of the additional query parameters in the LDA spec

● Replace LDA spec JSON compliant serialization by JSON-LD as

specified by the recent W3C recommendation
15

Dangg

http://golang.org

Created by some Google Engineers and former AT&T/Bell

Labs Unix System Laboratories employees around 2009:

Rob Pike, Robert Griesemer, Ken Thompson

Inspired by their former work at Bell Labs: Plan9

● Features:

 The best of three worlds: Python, C/C++, Java

 Compiled language with a clean, portable compiler design

 Consistent syntax

 Easy to use build and packaging framework included

 Adjusted to modern hardware architectures: concurrency, networking

 Performant (~ C++)

 Non-object-oriented, but has interfaces and methods

 Static typing, pointers but no pointer arithmetic, function closures…

● Used in some high profile, large-scale projects:

 Soundcloud‘s Prometheus monitoring system: http://prometheus.io

 Google‘s download server: http://dl.google.com serving

Chrome, Android SDK, Earth… downloads 16

Why Go?

Designed by Renee French
http://reneefrench.blogspot.com/
licensed under the Creative
Commons 3.0 Attributions license.

http://golang.org/
http://prometheus.io/
http://dl.google.com/

17

Architektur LOD-Service am KTBL

Mapping-
Beschreibung

„traditionelle“ KTBL-
Anwendungen (z. B. FeldAV)

Browser

Desktop

Apps

KTBL-Oracle
Datenbank

Apache

• Proxy

Jena TDB

• Graphen-
Speicher

D2RQ

• Relational-
nach-Graphen-
Mapping

Service-
Beschreibung

Volltexte

dangg

• Serialisierung:
Turtle, N-Triples

• Content Negotiation:
Format und Sprache

• HTML-Präsentation
• 303 Redirect und #-

basierte Auslieferung

Fuseki

• SPARQL
Endpoint

SearchHaus

• Semantische
Suche

Website

Suchmaschinen

Entscheidungs-
unterstützung,
Softwareagenten

● Done:

 Content Negotiation

 Per-Endpoint-Templates: SPARQL and HTML (standard go template

engine: https://golang.org/pkg/html/template/)

● Not yet:

 JSON-LD

 IP-based logging

 Configuration files

 Complete LDA/LDP support

● In-memory label processing:

 Speed (avg. 8 ms page load time -> huge improvement vs. ELDA)

 Might require redesign with datasets with lots of labels

● ~2000 SLOC

18

Dangg: features so far

● „Item“ struct:

 Either a Subject/Object or a Predicate in a RDF triple

● Item struct fields:

 P (Parent Node)

 T (Node Type at parse time: subj/obj or pred)

 L (human readable Label, filled from in-memory map)

 U (URL)

 V (Value: only filled for literals)

 D (Dimension: only filled for physical quantities, requires units to

be represented as blank nodes)

 N (Next Level of Items)

● All fields referencable from HTML templates

● Can feed any RDF data to it, as long as units are represented using

the blank node strategy

19

Dangg: Core data structure

20

Linked Data: Entitätenansicht

● Free tools, not too difficult to setup are available

 Usually, the problem exists between keyboard and chair

 There are rough edges

 Replacing certain components by own code is doable, when you

are fluent in graph based data models

Alternatives:

1. Buy an all in-one-solution with a service contract

2. Program each and every data service from scratch

21

Conclusions

Thanks for listening!

Questions?

Contact: d.martini@ktbl.de

22

