rmAgro

Linked Open Data in Agriculture,
September 27-28th 2017, Berlin, Germany.

daan Goense. (daan@pragmaas.com)
Daan Goense

- Retired from Wageningen University & Research (WUR)
- Research in Farm Machinery Management, Precision Agriculture and ICT in Agriculture.
- Consultant under the name Pragmaas.
- Hired by WUR to maintain the reference model for agriculture
Already 30 years efforts to standardise data communication in agriculture

- 1984: A project to stimulate information technology in the Netherlands.
- 1987: Ad hoc Arbeitsgruppe Busch-Schnittstelle
- 1991; ISO/TC23/SC19
- 2000: AgroXML (D), EDAPLOS (F)
- ...

Now:

- AgroConnect (NL)
- UNCEFACT (International)
- AgGateway (USA → International)
Technologies vary during time

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMOT:</td>
<td>relational database & process</td>
</tr>
<tr>
<td>EDI-Teelt 1-3:</td>
<td>ADIS – Edifact - XML</td>
</tr>
<tr>
<td>CIA:</td>
<td>Object Orientation</td>
</tr>
<tr>
<td>ISO11783-part10:</td>
<td>(ADIS) - XML</td>
</tr>
<tr>
<td>AgroXML:</td>
<td>XML</td>
</tr>
<tr>
<td>EDAPLOS → UNCEFACT:</td>
<td>XML</td>
</tr>
<tr>
<td>EDI-Teelt 4:</td>
<td>XML</td>
</tr>
<tr>
<td>drmCrop → EDI_Teelt4:</td>
<td>domain (Object Orientation) → XML</td>
</tr>
<tr>
<td>AgroXML -> AgroRDF</td>
<td>XML → RDF</td>
</tr>
<tr>
<td>ADAPT:</td>
<td>API / Plugin in C#</td>
</tr>
</tbody>
</table>
What triggered rmCrop?

- Change in technologies over time. (ADIS, (EDIFACT), XML, JSON, API, RDF)
 - Domain reference model should be independent from implementations.
- Additional scopes in crop production.
 - Precision Agriculture, Guidance, Tracking and tracing, etc.

- One common basis that defines the whole Crop Production Domain.
Why change to rmAgro?

- Other branches of agriculture **share objects** with crop production.
- **Share applications** like tracking and tracing.
- There are **mixed farm enterprises** (Crop production and animal production) where resources are shared.

→ **rmCrop → rmAgro**
 - Include Greenhouse production, Animal husbandry
 - **rmAgro is a project in progress**
 - Identify common classes
 - Add classes from other branches of agriculture
 - Nieuwe inzichten
What are sources for rmAgro

- Informatie model open teelten.
- ISO11783-10
- AgroXML
- Edaplos
- Data dictionary for plant protection products
- Dutch class model for fertilizers
- Frugicom (Horticulture)
- INSPIRE
- Dutch software houses and users of data
- Research projects from Wageningen UR
 - Crop growth models, scheduling of farm operations
- and recently ADAPT

we think we might cover quite some requirements
rmAgro; a model suite in EA

- **Business Process Model** *(BPMN)*, mainly for FIspace
- **Use case** model, mainly for ISO/TC23/SC19WG5
- Domain Reference Model *(drmAgro)*
- **Dynamic view** *(sequence diagrams)* for Fispace and Edi-Teelt
- **DDL model** *(transformed from drmAgro)*
- External models *(ISO19107, Fertilizer, Crop Protection)*
- External Informative XSD’s *(ISO11783, AgroXML)*
- External Used XSD’s *(XSD,GML,GMLCOV,SWE,UDT/UNCEFACT)*
- **Java Model** *(interface model & implementation model transformed from drmAgro)*
- Mapping *(drmAgro/drmCrop to other models)*
- **WSDL** *(defines messages for FISpace and Edi-Teelt)*
- **XSD model** *(transformed from drmAgro)*
- **ORF model** *(In development, transformed from drmAgro)*
Base is a Platform Independent Model (PIM)
rmAgro; a model suite in EA

- **Business Process Model (BPMN)**, mainly for **FISpace**
- **Use case model**, mainly for ISO/TC23/SC19WG5
- **Domain Reference Model (drmAgro)**
- **Dynamic view** (sequence diagrams for Fispace and Edi-Teelt)
- **DDL model** (transformed from drmAgro)
- **External models** (ISO19107, Fertilizer, Crop Protection)
- **External Informative XSD’s** (ISO11783, AgroXML)
- **External Used XSD’s** (XSD,GML,GMLCOV,SWE,UDT/UNCEFACT)
- **Java Model** (interface model & implementation model transformed from drmAgro)
- **Mapping** (drmAgro/drmCrop to other models)
- **WSDL** (defines messages for FISpace and Edi-Teelt)
- **XSD model** (transformed from drmAgro)
- **ORF model** (In development, transformed from drmAgro)
Modelling conventions for the domain model drmAgro

- It is a platform (computation) independent model!
- No id’s or keys, except for global identifiers as attributes.
- No foreign keys.
- Generic datatypes (*no language specific datatypes*)
- Many to many relations stay as they are, no association class (*except when it has attributes*)
Naming conventions used in drmAgro

- Camel based names for classes (i.e. `CropField`) and attributes (`CropYear`)

- **Type** is only used for data types!
 - Not for classification of objects!
 - *Use Classification or Category or Group, etc.*

- Designator in stead of Name. (from ISO11783)
Starting points

- Use existing standards when appropriate
 - ISO19107 and GML
 - SensorML
 - GMLCOV
 - UNCEFACT Unqualified Data Types
 - CodeType
 - IdentifierType
Some aspects that require(d) attention (1)

- **A class ↔ data type.**
 - When the object can be identified by the value of its attributes and needs no identifier, it is a data-type.

- **Enumerations ↔ Coding tables**
 - Be aware that a change in an enumeration list requires recompiling of code.

- **CodingList ↔ IdentifierList**
 - UNCEFACT differentiates between them, but when to use what is not always clear.
Some aspects that require attention (2)

Identifiers
- Initially only a Global Unique Identifier based on ISO15459 in the Netherlands
- ➔ generic Identifier based on UNCEFACT

Level of abstraction
- When to use a subclass?
Example of a **too** abstract class

- **DeviceElement** in ISO11783 stands for all functional components of an implement.
 - Bin
 - Section
 - Nozzle
 - Valve
 - Etc......

- *When is the reciprocal relation valid?*
Level of abstraction

- When to use a subclass?
 - As soon as one has to specify for which types of a class a relation to another class is valid, the class is too abstract.
Geografic information

- ISO19107 and GML
 - ISO19107 is an interface model
 - GML is an XML model based on ISO19107
 - There is no common, platform independent, model!
 - GML deviates sometimes from ISO19107
 - Polygon has boundary in ISO, not in GLM
 - Gridpoint does not exist in GLM
 - Geometries in the reference model are not transformed. For the XML model use GML. For the (Java) Interface Model use ISO19107.
Region specific attributes

- Ackerzahl in Germany
- Regulatory soil type in the Netherlands
- EPA number in the USA

- A country specific package where country specific classes are a sub-class from the class in the main package
Example of Region specific attribute

class drmCrop_NL

- CropField
 - RegulatorySoilType: RegulatorySoilTypeCodeEnumeration
 - Plot

 drmCrop::CropField
 - Status: StatusEnumeration
 - CropYear: Integer
 - CropSeason: String
 - Organic: Boolean [0..1]
 - CropProductionSequence: CroppingSequenceEnumeration [0..1]
 - CropProductionPeriodCode: CodeType
 - GrowthEnvironmentCode: CodeType
 - LocationDesignator: String

 ProductionType
 - ProductionTypeCode: CodeType
 - ProductionTypeDesignator: String

 0..*

 1

CropField
 - RegulatorySoilType: RegulatorySoilTypeCodeEnumeration
Structure of the domain model (1)

- drmAgro
 - DataTypes
 - Enumerations
 - Geometries (→ GML and GMLCOV or → ISO19107)
 - SWE types (→ SWE)
 - DataArrayType
 - XSD types (→ XMLSchema)
 - token, ncName, anyURI
 -
Structure of the domain model (2)

- drmAgro
 -
 - *All common classes* (i.e. Party, Organization, ..)
 -
 -
 - drmCrop
 - drmAnimal
 - drmGreenHouse
 - drmInfrastructure (yards, trees, roads, etc)
 - drmPostharvest
 - *(drmStyleGuide)*
In drmCrop

- drmCrop_NL
- ISO11783
 - DeviceClass
 - DeviceElement
 - ECU
 - ImplementECU
 - TaskController
Diagrams for different scopes of the model
Example for Batch
All classes have definitions, evt. remarks and examples

Definition.
CropField describes the continuous surface of land which is used during a period of time by a certain *CropProductionUnit*.

Remark.
The surface of the *CropField* is always within the borders of a Field.

As a *CropProductionUnit* applies to only one *CropType*, a *CropField* is grown by one *CropType*.

It is the farmer who decides when to split up to different *CropFields*. That can be a different *Variety*, a different purpose for which the crop is grown, a different class in seed production, the need to keep it separate for tracking and tracing purposes etc.
Background information

- rmAgroGuideline.docx (on the ftp server)

- Describes
 - Structure of the model suite
 - Modelling and naming conventions
 - Issues
 - Design patterns
Scopes covered by drmAgro

- **Parties**
 - Party, Organization, Person, Department, Farm, etc.

- **Fields**
 - Plot, Field, CropField, ActivityField, KadastralField

- **Activities on the farm**
 - Job, Task, Operation

- **Data processing**
 - DataSet, DataAggregation, Algorithm, DataProcess
Scopes covered by drmAgro (2)

- **Handling of products and produce**
 - ProductAllocation, Product, Batch, TreatmentZone

- **Sampling and analyses**
 - Sample, Analyses, PropertyValue, Laboratory, Container, VerticalLayer

- **CropRecording**
 - CropProductionUnit, CropField, Operation, AbsoluteTiming, CulturalPractise, OperationTechnique, SpatialDataset, ProductAllocation, TreatmentZone, Batch, etc.
Scopes covered by drmAgro (3)

- **Farm machinery**
 - Equipment, Implement, Tractor, ManMachineSystem

- **Ordering**
 - Order, OrderItem, Delivery, Invoice, Customer, Supplier

- **Product composition**
 - Product, ProductAllocation, Batch, ProductElement
Availability of the model

- **rmAgro snapshot:**
 ftp://pragmaas.com/rmCrop/rmAgro_SNAPSHOT/
 (Fails sometimes for dubious reasons)

- Enterprise Architect model
- Description of background as word document.
- Read only version of Enterprise Architect
Use of drmAgro/drmCrop as reference for

- EDI_Teelt messages (SOAP – XML based web services)
 - CropField data to the Dutch government
 - CropField data to advisors
 - Recommendations from advisors to FMIS
 - Orders from farmers to contractors
 - CropField records to processors

- UNCEFACT messages
 - Conversion to UNCEFACT naming conventions.
 - Crop and produce data to processors (Greenhouse)
 - Sample data to laboratories
 - Laboratory results
Coding tables

- CropClasses (3x)
- OperationTechniques
- CulturalPractises
- Products
 - CropProtectionProducts
 - Nutrients
- Produce
- Weather variables

- Between 50 and 100 coding lists
Coding tables & Identifier lists

- Leave that **as much as possible** to the authorities who can be made responsible for that.

- CropClasses (3x) → ??? Breeders ????
- OperationTechniques AEF ???
- CulturalPractises ????
- Products
 - CropProtectionProducts → Legislative Authorities
 - Nutrients → ??? Fertilizer industry ???
- Produce → GS1
- Weather variables → WMO
- Physical and Chemical soil variables → Soil science society
Is it ready?

- **No!** And it never will be!

- There are several loose ends
 - One is only sure when it is successfully implemented
 - Some parts are!

- There are issues to solve
 - When generating the XML model, Choice/SelectionOff is not separated as element yet.