rmAgro

Linked Open Data in Agriculture, September 27-28th 2017, Berlin, Germany. Daan Goense. (<u>daan@pragmaas.com</u>)

PRAGMAAS

Daan Goense

- Retired from Wageningen University & Research (WUR)
- Research in Farm Machinery Management, Precision Agriculture and ICT in Agriculture.
- Consultant under the name Pragmaas.
- Hired by WUR to maintain the reference model for agriculture

Already 30 years efforts to standardise data communication in agriculture

- 1984: A project to stimulate information technology in the Netherlands.
- 1987: Ad hoc Arbeitsgruppe Busch-Schnitstelle
- 1991; ISO/TC23/SC19
- 2000: AgroXML (D), EDAPLOS (F)

Now:

- AgroConnect (NL)
- UNCEFACT (International)
- AgGateway (USA → International)

Technologies vary during time

- IMOT:
- EDI-Teelt 1-3:
- CIA:
- ISO11783-part10:
- AgroXML:
- EDAPLOS \rightarrow UNCEFACT:
- EDI-Teelt 4:
- Image: drmCrop → EDI_Teelt4:
- AgroXML -> AgroRDF
- ADAPT:

relational database & process ADIS – Fdifact - XMI **Object Orientation** (ADIS) - XML XML XMI XMI domain (Object Orientation) \rightarrow XML $XMI \rightarrow RDF$ API / Plugin in C#

What triggered rmCrop?

- Change in technologies over time. (ADIS, (EDIFACT), XML, JSON, API, RDF)
 - → Domain reference model should be independent from implementations.
- Additional scopes in crop production.
 - Precision Agriculture, Guidance, Tracking and tracing, etc.
- One common basis that defines the <u>whole</u> Crop Production Domain.

Why change to rmAgro?

- Other branches of agriculture <u>share objects</u> with crop production.
- Share applications like tracking and tracing.
- There are <u>mixed farm</u> enterprises (Crop production and animal production) where resources are shared.
- \rightarrow rmCrop \rightarrow rmAgro
 - Include Greenhouse production, Animal husbandry
 - rmAgro is a project in progress
 - Identify common classes
 - Add classes from other branches of agriculture

nDigital

• Nieuwe inzichten

What are sources for rmAgro

- Informatie model open teelten.
- ISO11783-10
- AgroXML
- Edaplos
- Data dictionary for plant protection products
- Dutch class model for fertilizers
- Frugicom (Horticulture)
- INSPIRE
- Dutch software houses and users of data
- Research projects from Wageningen UR
 - Crop growth models, scheduling of farm operations
- and recently ADAPT
- we think we might cover quite some requirements

rmAgro; a model suite in EA

- Business Process Model (BPMN), mainly for FIspace
- Use case model, mainly for ISO/TC23/SC19WG5
- Domain Reference Model (drmAgro)
- Dynamic view (sequence diagrams for Fispace and Edi-Teelt)
- DDL model (transformed from drmAgro)
- External models (ISO19107, Fertilizer, Crop Protection)
- External Informative XSD's (ISO11783, AgroXML)
- External Used XSD's (XSD,GML,GMLCOV,SWE,UDT/UNCEFACT)
- Java Model (interface model & implementation model transformed from drmAgro)
- Mapping (drmAgro/drmCrop to other models)
- WSDL (defines messages for FISpace and Edi-Teelt)
- XSD model (transformed from drmAgro)
- **ORF model** (In development, transformed from drmAgro)

AGENINGEN UNIVERSI Wageningen

rmAgro; a model suite in EA

- Business Process Model (BPMN), mainly for FIspace
- Use case model, mainly for ISO/TC23/SC19WG5
- Domain Reference Model (drmAgro)
 - Dynamic view (sequence diagrams for Fispace and Edi-Teelt)
 - DDL model (transformed from drmAgro)
 - External models (ISO19107, Fertilizer, Crop Protection)
 - External Informative XSD's (ISO11783, AgroXML)
 - External Used XSD's (XSD,GML,GMLCOV,SWE,UDT/UNCEFACT)
 - Java Model (interface model & implementation model transformed from drmAgro)
 - Mapping (drmAgro/drmCrop to other models)
 - WSDL (defines messages for FISpace and Edi-Teelt)
 - XSD model (transformed from drmAgro)
 - **ORF model** (In development, transformed from drmAgro)

WAGENINGEN UNIVERSI WAGENINGEN

Modelling conventions for the domain model drmAgro

It is a platform (computation) independent model !

- No id's or keys, except for global identifiers as attributes.
- No foreign keys.
- Generic datatypes (no language specific datatypes)
- Many to many relations stay as they are, no association class (except when it has attributes)

Naming conventions used in drmAgro

- Camel based names for classes (i.e. CropField) and attributes (CropYear)
- Type is only used for data types !
 - Not for classification of objects !
 - Use Classification or Category or Group, etc.
- Designator in stead of Name. (from ISO11783)

Starting points

Use existing standards when appropriate

- ISO19107 and GML
- SensorML
- GMLCOV
- UNCEFACT Unqualified Data Types
 - CodeType
 - IdentifierType

Some aspects that require(d) attention (1)

• A class $\leftarrow \rightarrow$ data type.

 When the object can be identified by the value of its attributes and needs no identifier, it is a datatype)

Enumerations Coding tables

• Be aware that a change in an enumeration list requires recompiling of code.

■ CodingList ← → IdentifierList

• UNCEFACT differentiates between them, but when to use what is not always clear.

Some aspects that require attention (2)

Identifiers

- Initially only a Global Unique Identifier based on ISO15459 in the Netherlands
- → generic Identifier based on UNCEFACT

Level of abstraction

• When to use a subclass ?

Example of a too abstract class

AgroConnect

- DeviceElement in ISO11783 stands for all functional components of an implement.
 - Bin
 - Section
 - Nozzle
 - Valve
 - Etc.....
- When is the reciprocal relation valid?

AGENINGEN UNIVERSITY

WAGENINGENUR

rmDigital

Level of abstraction

When to use a subclass ?

 As soon as one has to specify for which types of a class a relation to another class is valid, the class is too abstract.

Geografic information

ISO19107 and GML

- ISO19107 is an interface model
- GML is an XML model based on ISO19107
 - There is no common, platform independent, model !
 - GML deviates sometimes from ISO19107
 - Polygon has boundary in ISO, not in GLM
 - Gridpoint does not exist in GLM
- → Geometries in the reference model are not transformed. For the XML model use GML. For the (Java) Interface Model use ISO19107.

Region specific attributes

- Ackerzahl in Germany
- Regulatory soil type in the Netherlands
- EPA number in the USA
- A country specific package where country specific classes are a sub-class from the class in the main package

Example of Region specific attribute

Structure of the domain model (1)

- drmAgro
 - DataTypes
 - Enumerations
 - \bullet Geometries (\rightarrow GML and GMLCOV or \rightarrow
 - ISO19107)

- SWE types (\rightarrow SWE)
 - DataArrayType
- ★ XSD types (→ XMLSchema)
 - token, ncName, anyURI

.

Structure of the domain model (2)

drmAgro

-
- All common classes (i.e. Party, Organization, .)
-
-
- drmCrop
- drmAnimal
- drmGreenHouse
- drmInfrastructure (yards, trees, roads, etc)

Digital

- drmPostharvest
- (drmStyleGuide)

In drmCrop

- drmCrop_NL
- ISO11783
 - DeviceClass
 - DeviceElement
 - ECU
 - ImplementECU
 - TaskController

Diagrams for different scopes of the model

—

- Real Activities And Equipment
- **Calibrities** ActivitiesSimple
- Realized Algorithm
- **P**Allocation
- Representation_Aggregation
- 🔁 Allocation_Products_on_Produce
- 💾 Allocation_Sorting
- Reallocations_Harvesting
- Hocations_OnCrops
- 💾 Analyses of Samples
- Replication Device
- **C**Auditing
- 🔁 BatchLot
- **P**Certification
- ₽ ContractorOrder
- ₽╬Crop
- **CropHistory**
- CropHistory2
- ReproductionUnit

AGENINGEN UNIVERSITY Wageningen Ur

Example for Batch

All classes have definitions, evt. remarks and examples

Class : CropField			
			-
General	CropField		
Templates		Stereotype:	
Rules			
Requirements		Status:	Propc
Constraints Scenarios Related Files Links	$\mathbf{B} I \underline{\mathbf{U}} \mathbf{A} \mathbf{\dot{\mathbf{x}}} = \mathbf{\dot{\mathbf{y}}} = \mathbf{x}^* \mathbf{x}_2 \mathbf{\dot{\mathbf{x}}} \mathbf{\dot{\mathbf{x}}}$	Alias:	
	Definition.	, indo.	
	CropField describes the continuous surface of land which is used during a period of time by a certain CropProductionUnit.	Keywords:	
		Author	aoen
		Autior.	5
	Remark.	Complexity:	Easy
	The surface of the croprietd is always within the borders of a field.		412.0.10
	As a CropProductionUnit applies to only one CropType , a CropField is	Language:	<non< td=""></non<>
	grown by one <u>CropType</u> .	Version:	4.0
	It is the farmer who decides when to split up to different CropFields . That can	Phase:	2.0
	be a different Variety , a different purpose for which the crop is grown, a		
	and tracing purposes etc		
		Package:	drmC

pace

AGENINGE

WAGENI

SITY

GENUR

AgroConnect

rmDigital

Background information

- rmAgroGuideline.docx (on the ftp server)
- Describes
 - Structure of the model suite
 - Modelling and naming conventions
 - Issues
 - Design patterns

Scopes covered by drmAgro

Parties

• Party, Organization, Person, Department, Farm, etc.

Fields

- Plot, Field, CropField, ActivityField, KadastralField
- Activities on the farm
 - Job, Task, Operation
- Data processing
 - DataSet, DataAggregation, Algorithm, DataProcess

Scopes covered by drmAgro (2)

Handling of products and produce

- ProductAllocation, Product, Batch, TreatmentZone
- Sampling and analyses
 - Sample, Analyses, PropertyValue, Laboratory, Container, VerticalLayer
- CropRecording
 - CropProductionUnit, CropField, Operation, AbsoluteTiming, CulturalPractise, OperationTechnique, SpatialDataset, ProductAllocation, TreatmentZone, Batch, etc.

Scopes covered by drmAgro (3)

Farm machinery

- Equipment, Implement, Tractor, ManMachineSystem
- Ordering
 - Order, OrderItem, Delivery, Invoice, Customer, Supplier
- Product composition
 - Product, ProductAllocation, Batch, ProductElement

Availability of the model

- rmAgro snapshot: <u>ftp://pragmaas.com/rmCrop/rmAgro_SNAPSHOT/</u>
- (Fails sometimes for dubious reasons)
 - Enterprise Architect model
 - description of background as word document.
 - Read only version of Enterprise Architect

Use of drmAgro/drmCrop as reference for

EDI_Teelt messages (SOAP – XML based web services)

- CropField data to the Dutch government
- CropField data to advisors
- Recommendations from advisors to FMIS
- Orders from farmers to contractors
- CropField records to processors
- UNCEFACT messages
 - → Conversion to UNCEFACT naming conventions.
 - Crop and produce data to processors (Greenhouse)
 - Sample data to laboratories
 - Laboratory results

WAGENINGEN UNIVERSIT

Coding tables

- CropClasses (3x)
- OperationTechniques
- CulturalPractises
- Products
 - CropProtectionProducts
 - Nutrients
- Produce
- Weather variables
- Between 50 and 100 coding lists

Digital

Coding tables & Identifier lists

- Leave that as much as possible to the authorities who can be made responsible for that.
- CropClasses (3x) → ???? Breeders ????
- OperationTechniques AEF ???
- CulturalPractises ????
- Products
 - CropProtectionProducts → Legislative Authorities
 - Nutrients → ??? Fertilizer industry ???
- Produce → GS1
- Physical and Chemical soil variables → Soil science society

Is it ready ?

No ! And it never will be !

- There are several loose ends
- One is only sure when it is successfully implemented
 - Some parts are !
- There are issues to solve
 - When generating the XML model, Choice/SelectionOff is not separated as element yet.

