

rederal Research Centre for Cultivated Plan

SYNOPS a pesticide risk indicator model to assess environmental risk – contribution to and benefits of LOD

Strassemeyer J.¹, <u>Dominic A.R.</u>¹, Tecklenburg J.¹ Daehmlow D.¹, Horney P. ¹, Claus A.², Böhmer J.², Golla B.¹

¹ Institute for Strategies and Technology Assessment, Julius Kühn-Institute (JKI), Kleinmachnow, Germany

² Chamber of Agriculture in North-Rhine Westphalia, Plant Protection Service, Germany

SYNOPS - environmental risk assessment tool

- ➤ a model system for quantitative assessment of risk potential of pesticides for the environment
- estimates risk to various reference organisms in soil, water and field margins
- developed by Julius Kühn-Institute (JKI) in 1997
- applications:
 - EU-level assessments and as OECD indicator
 - various EU-member-states for risk management
 - at regional levels (federal states) and specific catchment levels

SYNOPS – exposure pathways

SYNOPS - models

SYNOPS - schema

topographical information (InVeKos/ATKIS)

crop parameters

(EU-FOCUS scenarios/DWD)

weather parameters (DWD)

Soil properties (BÜK1000/BK50)

surface water type, distance (ATKIS/GSK3C)

chemical properties (PPDB/BVL)

Toxicity for reference organisms (LC₅₀ & NOEC)

exposure

ETR= exposure (PEC)

toxicity (NOEC, LC_{50})

SYNOPS – 3 flavours

SYNOPS-WEB

<u>Web-tool</u> for farmers and advisors to assess environmental risk from pesticides at field level

SYNOPS-GIS

Risk assessment at multiple **spatial scales** – catchment, regional, national, EU

SYNOPS-TREND

Temporal trends of pesticide risk assessed against a reference period

SYNOPS

SYNOPS-WEB - step 1

Easy-to-use interface, aimed at non-expert user http://synops.julius-kuehn.de/

SYNOPS-WEB - step 2

Easy-to-use interface, aimed at non-expert user

SYNOPS-WEB - step 3

How SYNOPS can benefit from LOD...

SYNOPS-WEB – outputs as LOD?

- Too field/farmer specific, the farmer would not want to make it open
- > Many fictional simulations are possible and hence not reliable or useful for further analysis
- > Not much potential for providing it as open data

SYNOPS-GIS

- aimed at non-expert user
- calculations at field-level, results aggregated at various spatial scales
- spatial scales catchment, growing regions, district, federal states, national(?)
- ➤ 1.5 million fields for Germany
 - ➤ Different possible crop combinations exact crop location is not known
 - Many randomised application scenarios

SYNOPS-TREND

Current year's risk compared against a reference period (1995-2005) at national level.

- Aggregation levels:
 - herbicide, fungicide, insecticide
 - Surface water, soil, field margins
 - Chemicals/ active ingredients

SYNOPS-TREND

0.00

How SYNOPS can contribute to LOD...

Thank you for your attention!