

DATA INTEGRATION AND ANALYSIS IN PRECISION DAIRY FARMING: A SEMANTIC DATA WAREHOUSING APPROACH

Martin Wischenbart¹, Simon Schausberger², Christoph G. Schuetz², S. Dana Tomic³

1. Josephinum Research, 2. Johannes Kepler University Linz, 3. Smartbow GmbH

Dipl.-Ing. Martin WISCHENBART, M.Sc.

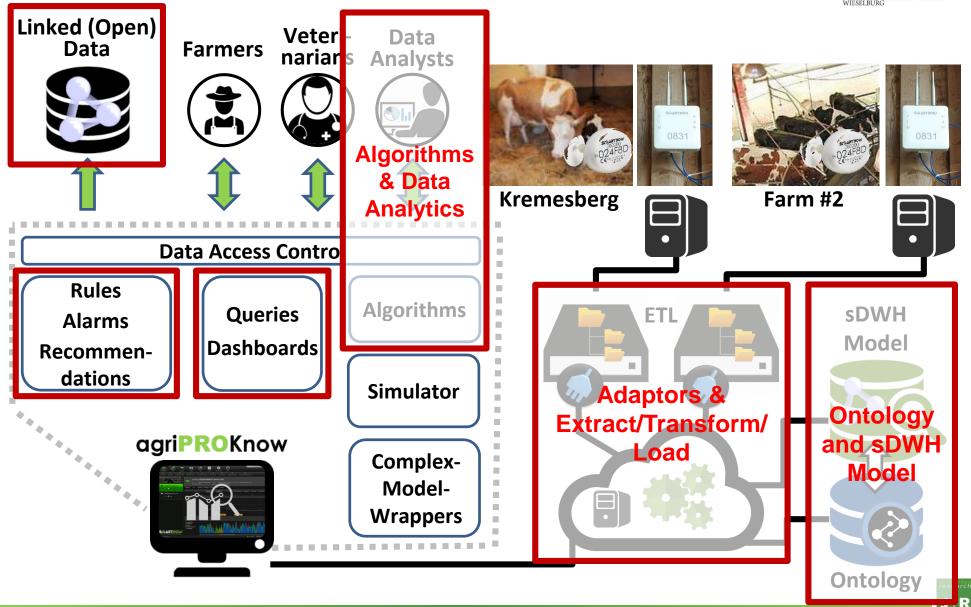
Josephinum Research, Wieselburg, Austria

Linked Open Data in Agriculture – Applications in Livestock Farming 28th of September, 2017, H4 Hotel Berlin Alexanderplatz, Berlin, Germany

MOTIVATION

Situation:

- Precision dairy farming sensors deliver large amounts of diverse data
- Many heterogeneities between data sources, farms and tools
- Need for interoperable interfaces
- Data integration tends to require enormous efforts
- Analyses often limited to regional reports in nonstandardized formats


Goals:

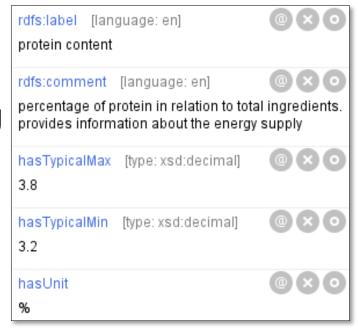
- Create a reference data structure usable across different systems and farms
- Facilitate integration of available dairy farm data
- Enable systematic analyses within and across farms
- Throughout all steps: consider individual access policies and privacy needs

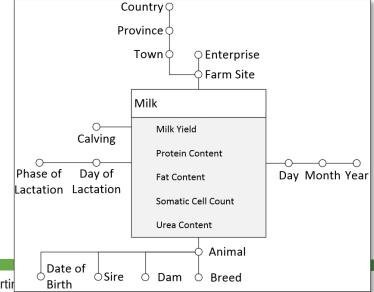
PROJECT AGRIPROKNOW: ARCHITECTURE

AGENDA

- 1. Ontology and sDWH Model
- 2. Adaptors & Extract/Transform/Load
- 3. Algorithms & Data Analytics
- 4. Queries & Dashboards
- 5. Rules, Alarms & Recommendations
- 6. Exporting Linked (Open) Data
- Conclusions & Outlook
- Duration: Nov. 2015 Jan. 2018 Volume: 1,7 Mio. Euro
- Funding: BMVIT, FFG, Production of the Future Project-No.: 848610

1. ONTOLOGY AND SDWH MODEL




Ontology:

- Serves as a schema and defines
 generic terms for precision dairy farming
- Includes references to other ontologies, standards and literature

Semantic Data Warehouse Model:

- Exensible reference schema suitable for various kinds of dairy farms
- Defined in RDF using QB and QB40 vocabularies for description of multidimensional OLAP data cubes
- Redundancy to simplify queries and for faster responses

2. Adaptors & Extract/Transform/Load

Manually implemented adaptors as individual plug-ins for each type of source → deployable on multiple farms with equal equipment

Data extraction, transformation and loading (ETL):

- Extraction from different source systems & farms
 resolving technical and syntactic heterogeneities: e.g., access to database vs.
 parsing CSV retrieved via an API; deal with formats of animals' national IDs
- Transformation to RDF format and into sDWH schema
 resolving structural and semantic heterogeneities: e.g., plain text/CSV vs.
 relational vs. name-value-pairs & lists (JSON); different abbreviations and languages
 (DE/EN/SK/...); overlapping or related term definitions ("D.M. Weight / Cow" vs.
 "Futtermenge" in fresh weight for a group)
- Loading into the sDWH
 transfer and processing including aggregation to a unified level: e.g., plausibility checks; handling of missing inputs

3. ALGORITHMS & DATA ANALYTICS

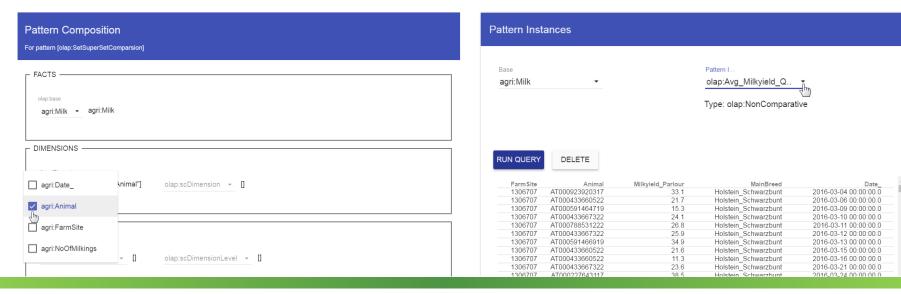
Integrated data as basis for statistic and stochasic analytics Publish aggregrated and anonymous data, e.g.:

 Average daily milk yield in liters, rumination/lying durations in minutes, for each breed across all farms in the sDWH

MainBreed	SecondBreed	Milkyield	RuminationDuration	LyingDuration
Holstein_Friesian	German_Red_Pied	22,1	516,1	928,8
Holstein_Friesian	NONE	25,0	491,3	895,2

Algorithms to analyze relations and correlations between different parameters and production factors

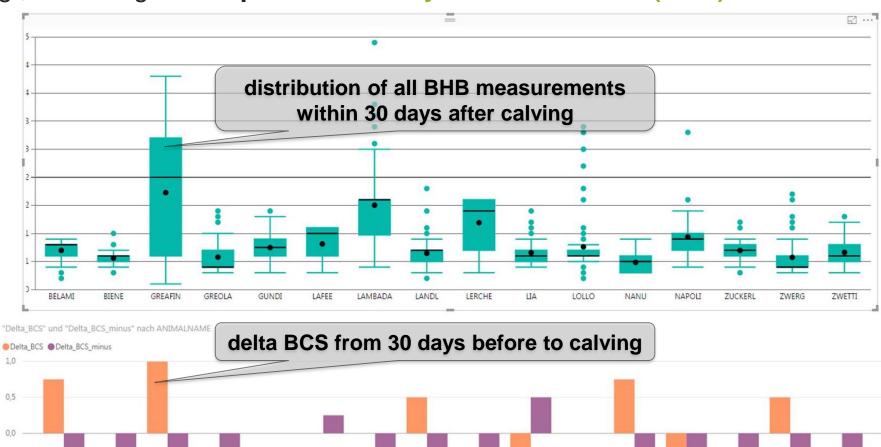
 Data-based detection of diseases, e.g., to improve methods for early prognosis and diagnosis of ketosis through pattern recognition, ANOVA, regression and prinicipal component analysis to discover influencing factors for beta-hydroxy-butyrate (BHB) blood measurements


4. QUERIES & DASHBOARDS (1)

Interface for advanced farmers, veterinarians and consultants

Interactive construction and execution of queries on the basis of various pre-defined query patterns; further structuring by:

- Definition of common business terms ("predicates")
 e.g., IncreasedSCC := SomaticCellCount > 200000
- Calculation of additional parameters ("calculated measures")
 e.g., FatProteinRatio := FatContent / ProteinContent


4. QUERIES & DASHBOARDS (2)

-0.5

Dashboards to visualize query results

e.g., showing developement of body condition score (BCS) and BHB

delta BCS until 30 days after calving

ZWETTI

NAPOLI

ZUCKERL

5. Rules, Alarms & Recommendations

Specification of rules:

- Definition by domain experts
- Basing on terms from the sDWH model

Execution of rules:

- Creation of alarms/reports to farmers or veterinarians
- Recommend actions (or trigger them directly) on machines

Examples:

- Alarm 'laming cows': analyse animals' daily walking distance, time, variation of these parameters → alarm if a pre-defined no. of animals exhibits a certain decrease in walking activity (maybe suggest pedicure)
- Report 'insemnation due': report about cows' history after calving: milk yield and parameters, feed intake, ketosis diagnoses, lameness, ... → help farmer decide about insemnation
- Action 'ketosis prevention': prophylactic feeding of propylene glycol to animals having an increased risk for ketosis: automatically or in report

6. EXPORTING LINKED (OPEN) DATA

1. Export linked data

- Query results, alarms, reports or recommended actions in RDF format
- Facilitate data exchange and integration with devices within the farm or with authorized personnel

6. EXPORTING LINKED (OPEN) DATA

1. Export linked data

- 2. Export and publish linked open data
- Aggregated data and statistics
- No disclosure of private operational farm data

CONCLUSIONS & OUTLOOK (1)

- Built a semantic data warehouse (sDWH) for cross-farm integration of precision dairy farming data
- Adaptors to resolve heterogeneities in schemas and data from different sources
- Incorporated data on 1700 dairy cows from two farms
- The sDWH facilitates analyses, queries and rules on integrated data, aiming to allow new kinds of applications and interfaces for different stakeholders
- Use of semantic technologies facilitates exports and data exchange in RDF format and linked data

CONCLUSIONS & OUTLOOK (2)

- Motivate vendors to create open interfaces for providing data by lowering obstacles of data integration
- Advance provision of cross-farm comparable data and decision support (operational farm data for private use; aggregated data and statistics for publication)
- Project agriProKnow is still ongoing
- Further development and evaluation with different stakeholders planned
- A final public agriProKnow workshop will take place on November 27th, 2017 (including excursion to farm)
 - contact <u>martin.wischenbart@josephninum.at</u> for an invitation

THANK YOU!

QUESTIONS

Dipl.-Ing. Martin Wischenbart, M.Sc.

Data and Information Sciences

Josephinum Research, Wieselburg, Austria

E-Mail: martin.wischenbart@josephinum.at

Phone: +43 7416 52175 630

Web: http://research.josephinum.at

