

Berechnungsstandard für einzelbetriebliche Klimabilanzen (BEK) in der Landwirtschaft Handbuch

Berechnungsstandard für einzelbetriebliche Klimabilanzen (BEK) in der Landwirtschaft

Handbuch

Johannes Dries | Mathias Effenberger | Lisa Fröhlich | Katja Gödeke | Sven Grebe | Hans-Dieter Haenel | Anja Hansen | Uwe Häußermann | Philipp Holz | Stephanie Kätsch | Caroline Labonte | Ansgar Lasar + | Aurelia Nyfeler-Brunner | Bernhard Osterburg | Petra Paffrath | Eike Poddey | Meike Schmehl | Harald Schmid | Martine Schraml | Cora Vos | Sebastian Wulf | Bianca Zerhusen

Bitte zitieren Sie diese Publikation bzw. Teile daraus wie folgt:

Arbeitsgruppe BEK (2024): Berechnungsstandard für einzelbetriebliche Klimabilanzen (BEK) in der Landwirtschaft. Handbuch, Darmstadt, Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.

© KTBL 2024, 4., aktualisierte Ausgabe

Herausgeber und Vertrieb

Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL) Bartningstraße 49 | 64289 Darmstadt Telefon +49 6151 7001-0 | E-Mail: ktbl@ktbl.de vertrieb@ktbl.de | Telefon Vertrieb +49 6151 7001-189 www.ktbl.de

Herausgegeben mit Förderung des Bundesministeriums für Ernährung und Landwirtschaft aufgrund eines Beschlusses des Deutschen Bundestages.

Titelfoto

© stock.adobe.com | William

Inhalt

1	Einleitung	5
2	Betrachtungsrahmen	6
3 3.1 3.2 3.3	Berücksichtigte Treibhausgasquellen Treibhausgasquellen im Pflanzenbau Treibhausgasquellen in der Tierhaltung Treibhausgasquellen in der Energiegewinnung aus Biogas	8
4	Aufteilung der entstandenen Treibhausgasemissionen auf Haupt- und Nebenprodukte	17
5	Treibhausgasflüsse zwischen Produktionsverfahren, Umgang mit Nebenprodukten und Bewertung von Humus-C-Veränderungen	19
6	Ermittlung des produktbezogenen CO ₂ -Fußabdrucks	22
7	Anleitung zum Gebrauch der Parameterdatei	24
8	Zusammenfassung	26
Litera	tur	27
Anhar	ng	29
Erläut	erungen zu den Treibhausgasquellen im Pflanzenbau	29
Erläut	erungen zu den Treibhausgasquellen in der Tierhaltung	33
Erläut	erungen zu den Treibhausgasquellen bei der Energiegewinnung aus Biogas	37
Erläut	erungen zu Gutschriften für Nebenprodukte	39
Abkür	zungen	40
Mitwi	rkende	42
Beteil	igte Organisationen	43

1 Einleitung

Die Arbeitsgruppe zum Berechnungsstandard für einzelbetriebliche Klimabilanzen in der Landwirtschaft (BEK) wurde 2012 im Rahmen des Arbeitsforums "Treibhausgasbilanzen und Klimaschutz in der Landwirtschaft" gegründet und setzt sich aus Organisationen mit Erfahrung in der Treibhausgasbilanzierung zusammen. Sie hat das Ziel, eine einheitliche und transparente Berechnungsgrundlage für die einzelbetriebliche Treibhausgasbilanzierung in der Landwirtschaft bereitzustellen. Besonderes Augenmerk wird dabei auf die gesamtbetriebliche, einheitliche Betrachtung der verschiedenen Produktionsverfahren des landwirtschaftlichen Betriebes gelegt. Aus dieser Zusammenarbeit sind u.a. dieses Handbuch und eine Parameterdatei entstanden, die über die Homepage des KTBL zur Verfügung gestellt werden (Tab. 1). Der BEK versetzt Interessentinnen und Interessenten in die Lage, selbst Treibhausgasberechnungen durchzuführen, eigene EDV-Programme nach dem BEK zu entwickeln oder bestehende EDV-Programme mit dem BEK abzugleichen.

Die Treibhausgasbilanzierung landwirtschaftlicher Produkte hat in letzter Zeit stark an Bedeutung gewonnen. Insbesondere die Lebensmittelindustrie hat aufgrund von Verpflichtungen zur Reduktion von Treibhausgasemissionen ein wachsendes Interesse am CO₂-Fußabdruck der von ihnen bezogenen Produkte. Derzeit wird intensiv geprüft, wie sich der BEK in bestehende, internationale Vorgaben zur Bilanzierung spezifischer Produktgruppen einfügt, ohne dabei die gesamtbetriebliche Perspektive aus den Augen zu verlieren.

Die vorliegende Ausgabe des BEK-Handbuchs und die Parameterdatei stellen einen vorläufigen Stand der Methodenentwicklung dar. Im Vergleich zur bisherigen Ausgabe von 2021 wurden im Wesentlichen die Werte für das Treibhauspotenzial und der Lachgasemissionsfaktoren für die Ausbringung von Stickstoffdüngern gemäß des Emissionsinventars aktualisiert (siehe S. 6 und S. 29).

Die Veränderungen des Humuskohlenstoffs durch Bewirtschaftungsmaßnahmen sind für die Treibhausgasemissionen von großer Bedeutung. Für ihre Berücksichtigung in der Treibhausgasbilanz gibt es derzeit jedoch keine wissenschaftlich abgesicherte Methode. Die Arbeitsgruppe ist sich bewusst, dass die bisherige Vorgehensweise im BEK nur einen stark vereinfachten Ansatz darstellt, es jedoch wichtig ist, einen praktikablen und wissenschaftlich fundierten Ansatz zur Einbeziehung der C-Flüsse zu erarbeiten. Aus diesem Grund werden die Ergebnisse der Humusbilanz und die damit einhergehenden Emissionen separat ausgewiesen und nicht in das Produktergebnis eingerechnet (siehe Ausführungen zu P_F9, P_F10, P_N1, T_N2 und BG_N3).

Für den Umgang mit Nebenprodukten gibt es in der Ökobilanzierung verschiedene Ansätze. Die BEK-Arbeitsgruppe hatte sich aus mehreren Gründen dafür entschieden, bei Prozessen mit Nebenprodukten nach der Gutschriftenmethode vorzugehen (siehe S. 17). Ein alternativer Ansatz wird derzeit in der BEK-Arbeitsgruppe eingehend geprüft, um eine Anschlussfähigkeit an internationale Vorgaben zum CO₂-Fußabdruck zu gewährleisten.

Tab. 1: Module des "Berechnungsstandard einzelbetriebliche Klimabilanzen (BEK)"

Modul	Online
Handbuch mit Beschreibung des Vorgehens und der Berechnungsmethodik	https://www.ktbl.de/fileadmin/user_upload/Allgemeines/Download/BEK/ Handbuch.pdf
Parameterdatei als Web-Anwendung (Emissionsfaktoren und Begleitwerte)	https://daten.ktbl.de/bek/

2 Betrachtungsrahmen

In der Landwirtschaft werden folgende klimawirksame Gase direkt oder indirekt emittiert und in die vorliegende Betrachtung mit eingeschlossen: Methan (CH_4), Lachgas (N_2O) und Kohlenstoffdioxid (CO_2). Ammoniak (NH_3) wirkt nicht direkt als Treibhausgas (THG), kann jedoch nach Deposition indirekt zu Lachgasemissionen führen.

Für die Berechnung von Treibhausgasemissionen aus der landwirtschaftlichen Produktion unterscheidet man zwischen sogenannten direkten Emissionen, die unmittelbar in einem Prozess anfallen, indirekten Emissionen, die durch Umsetzungen von emittierten Substanzen entstehen, und vorgelagerten Emissionen aus der Herstellung von Betriebsmitteln. In dem hier vorgelegten Standard werden folgende Emissionsquellen erfasst:

Direkte Emissionen:

- N₂O-Emissionen, z. B. aus N-Einträgen durch die Düngung
- CH₄-Emissionen, z. B. aus enterischer Fermentation (Verdauung der Tiere), Güllelagerung
- CO₂-Emissionen aus der Verbrennung fossiler Energieträger
- CO₂-Emissionen aus der Freisetzung langfristig gespeicherter organischer Substanz,
 z. B. Humusabbau bei Grünlandumbruch
- CO₂-Emissionen aus der Anwendung von Kalk und harnstoffhaltigen Mineraldüngern

Indirekte Emissionen:

- N₂O aus der Deposition von NH₃. Ammoniak verbleibt in der Regel nur kurze Zeit in der Atmosphäre. Die Deposition von NH₃ führt zu N-Einträgen in Ökosysteme und somit zu N₂O-Emissionen.
- N₂O aus N-Auswaschung. Die Auswaschung von Stickstoff als Nitrat führt zu N-Einträgen in die wassergesättigte Bodenzone und in der Folge zu N₂O-Emissionen.

Vorgelagerte Emissionen (auch: "THG-Rucksack"):

■ THG-Emissionen aus der Bereitstellung von Betriebsmitteln (einschließlich Maschinen) werden in der Regel als CO₂-Äquivalente (CO₂e) zusammengefasst. Zum Großteil resultieren diese aus dem Energiebedarf für die Herstellung, können aber auch produktionsbedingte Emissionen anderer Treibhausgase enthalten, wie N₂O aus der Herstellung nitrathaltiger Düngemittel.

Nicht berücksichtigt werden CO_2 -Emissionen aus der Umsetzung kurzfristig gespeicherter organischer Substanzen, beispielsweise CO_2 -Emissionen aus der Atmung von Tieren oder aus der Verbrennung von Biogas. Hier wird davon ausgegangen, dass die freigesetzte Menge CO_2 derjenigen Menge entspricht, die beim Wachstum der Futter- bzw. Energiepflanzen aus der Atmosphäre auf genommen wurde.

Die bei der landwirtschaftlichen Erzeugung freigesetzten Mengen an klimawirksamen Gasen werden – wie auch für andere Wirtschaftssektoren üblich – in $\rm CO_2$ -Äquivalente ($\rm CO_2$ e) umgerechnet. $\rm CO_2$ e dienen als Maßeinheit, die den unterschiedlichen Einfluss der verschiedenen Treibhausgase auf die Erderwärmung berücksichtigt. Dies erfolgt mittels des sogenannten Treibhauspotenzials (engl. global warming potential, GWP) in Relation zu $\rm CO_2$. Der BEK stützt sich auf die Treibhauspotenziale aus IPCC (2015) mit einem Zeithorizont von 100 Jahren ($\rm GWP_{100}$), die auch in der aktuellen offiziellen Treibhausgas-Berichterstattung verwendet werden (siehe Abschnitt Results 2024 in Vos et al. 2024, UBA 2023, S. 88). Wegen ihrer atmosphärischen Verweilzeit und physikalischen Eigenschaften gelten $\rm N_2O$ als 265-mal und $\rm CH_4$ als 28-mal so

klimawirksam wie CO_2 innerhalb eines Zeitraums von 100 Jahren (IPCC 2015, S. 87). Andere GWP-Faktoren sind zulässig, sofern dies dokumentiert wird.

Für die Treibhausgasbilanzierung kann ein landwirtschaftlicher Betrieb als eine Einheit betrachtet werden. Häufig ist es jedoch sinnvoll, die Bilanzierung auf die einzelnen Betriebszweige und die dazugehörige erbrachte Leistung zu beziehen. Diese Trennung in Betriebszweige erleichtert es, einzelbetriebliche Potenziale zur Verbesserung der Treibhausgasbilanz konkret zu lokalisieren.

Im BEK wird daher zwischen Pflanzenbau, Tierhaltung und Energiegewinnung – Vergärung von Wirtschaftsdünger und Energiepflanzen zu Biogas – unterschieden. Andere erneuerbare Energieträger wie Photovoltaikstrom, Windstrom, Wasserkraftstrom und Biodiesel sind nicht Gegenstand des BEK.

Bei der Einzelbetrachtung der Betriebszweige müssen die Schnittstellen zwischen den Betriebszweigen klar definiert sein, und es ist sicherzustellen, dass keine Bilanzbrüche entstehen. Außerdem ist es nötig, die in den Betriebszweigen entstehenden Haupt- und Nebenprodukte deutlich voneinander abzugrenzen und zu bewerten. Nicht nur die Hauptprodukte, wie beispielsweise Milch oder Getreide, sondern auch die Nebenprodukte müssen mit in die Bilanz einbezogen werden. Diese Nebenprodukte können entweder den Betrieb verlassen, z.B. Schlachtkühe, oder in einen anderen Betriebszweig wechseln, z.B. Wirtschaftsdünger. Abbildung 1 veranschaulicht die Treibhausgasbilanzierung nach BEK in komprimierter Form.

Abb. 1: Systematik der Treibhausgasbilanzierung nach BEK

3 Berücksichtigte Treibhausgasquellen

Für jede landwirtschaftliche Treibhausgasquelle werden im BEK die jeweils relevanten Gase (z. B. N_2O) und die verursachenden Stoffmengen (z. B. kg N) identifiziert. Die Emissionen werden dann durch Multiplikation der Stoffmengen mit den entsprechenden Emissionsfaktoren ermittelt und in CO_2e umgerechnet. So führt zum Beispiel der im Mineraldünger enthaltene Stickstoff zu N_2O -Emissionen aus dem Boden. Die ausgebrachte Mineraldüngermenge wird mit den Emissionsfaktoren und dem Treibhauspotenzial von N_2O (GWP $_{100} = 265$ kg CO_2e/kg) aus der Parameterdatei multipliziert und ergibt die Menge an CO_2e aus dieser Emissionsquelle.

Stehen mehrere Teilprozesse in einer direkten Abfolge, berücksichtigt die Berechnungsmethodik des BEK die Massenbilanz, d. h. eine Stoffmenge, die im vorhergehenden Teilprozess durch Emission verloren gegangen ist, kann im aktuellen Teilprozess nicht mehr zur Emission beitragen. So verringert sich in der Tierhaltung die Stickstoffmenge, aus der sich Emissionen von N₂O und NH₃ speisen, und zwar von der tierischen Ausscheidung über die Teilprozesse "Stall" und "Lager" bis hin zur resultierenden Stickstoffmenge im auszubringenden Wirtschaftsdünger.

Bei dem Vergleich von Treibhausgasbilanzen, die zu verschiedenen Zeitpunkten erstellt worden sind, sind die verwendeten Parameter der älteren Versionen rückwirkend zu prüfen. So repräsentiert ein Teil der Faktoren die Rahmenbedingungen eines gewissen Zeitraums, z.B. der Emissionsfaktor der Strombereitstellung den Mix an eingesetzten Energiequellen, und sollte daher unverändert bleiben. Liegen allerdings geänderte Emissionsfaktoren und Treibhauspotenziale aufgrund neuer wissenschaftlicher Erkenntnisse vor, müssen diese neuen Werte auch für die älteren Bilanzen angewendet werden.

3.1 Treibhausgasguellen im Pflanzenbau

Für Verfahren im Pflanzenbau (P) sind in Tabelle 2 die Quellen für direkte und indirekte Treibhausgasemissionen vom Feld (Index "F") sowie für vorgelagerte Emissionen aus dem Betriebsmitteleinsatz (Index "B") aufgeführt. Die Zahlen kennzeichnen die laufende Nummer der Emissionsquelle.

Tab. 2: Treibhausgasquellen im Pflanzenbau

Lfd. Nr.	Emissionsart und -quelle
Direkte und	indirekte Treibhausgasemissionen von Feld und Grünland
P _F 1	N ₂ O-Emissionen aus NH ₃ -Verlusten bei Düngung mit Wirtschaftsdüngern ¹⁾
P _F 2	N ₂ O-Emissionen aus NH ₃ -Verlusten bei Düngung mit Mineraldüngern
P _F 3	N ₂ O-Emissionen aus der Düngung mit Wirtschaftsdüngern ¹⁾
P _F 4	N ₂ O-Emissionen aus der Düngung mit Mineraldüngern
P _F 5	N ₂ O-Emissionen aus Ernte- und Wurzelrückständen sowie aus Stroh- und Gründüngung
P _F 6	N ₂ O-Emissionen aus anzurechnendem Stickstoff aus organischer Düngung des Vorjahres
P _F 7	N ₂ O-Emissionen aus mineraldüngerwirksamen N-Ausscheidungen aus Beweidung
P _F 8	CO ₂ -Emissionen aus Kalk- und Harnstoffdüngung
P _F 9	CO ₂ -Emissionen bzwBindung aus Humusabbau bzwaufbau der angebauten Fruchtart ²⁾
P _F 10	N ₂ O-Emissionen aus Humusabbau der angebauten Fruchtart ²⁾
P _F 11	CO ₂ -Emissionen bzwBindung aus Grünland- bzw. Ackerlandumwandlung
P _F 12	N ₂ O-Emissionen aus Grünlandumwandlung in Ackerland
P _F 13	CO ₂ e-Emissionen aus Humusabbau bei der Bewirtschaftung organischer Böden

Fortsetzung der Tabelle nächste Seite, Fußnoten am Ende der Tabelle

Lfd. Nr.	Emissionsart und -quelle
Vorgelagerte	Treibhausgasemissionen aus dem Betriebsmitteleinsatz
P _B 1	CO ₂ e-Emissionen aus Mineraldüngerbereitstellung
P _B 2	CO ₂ e-Emissionen für mineraldüngerwirksame Nährstofflieferung aus Wirtschaftsdüngereinsatz ¹⁾
P _B 3	${ m CO_2}$ e-Emissionen für mineraldüngerwirksame Nährstofflieferung der Vorfrucht und Ausscheidungen auf der Weide
P _B 4	CO ₂ e-Emissionen aus Saatgutbereitstellung
P _B 5	CO ₂ e-Emissionen aus Pflanzenschutzmittelbereitstellung
P _B 6	CO ₂ e-Emissionen aus Energiebereitstellung und -konversion
P _B 7	CO ₂ e-Emissionen aus Maschinenherstellung
P _B 8	CO ₂ e-Emissionen aus Werkstoffbereitstellung

P = Pflanzenbau; F = Feld; B = Betriebsmitteleinsatz

Tabelle 3 zeigt den detaillierten Rechenweg am Beispiel der N_2 O-Emissionen aus der Düngung mit Wirtschaftsdüngern (P_F 3). Neben dem Rechenweg wird in der rechten Spalte der Tabelle die Herkunft der Daten ausgewiesen. Für die ausgebrachte Güllemenge und deren Stickstoffgehalt nach Abzug der Stallund Lagerverluste sollte ein betriebsspezifischer Wert verwendet werden. Die N_2 O-Emissionen werden auf Basis der gesamten ausgebrachten Stickstoffmenge berechnet. Der Anteil der N_2 O-Emissionen, der sich auf den von der Pflanze im Jahr der Ausbringung genutzten Stickstoff bezieht, wird dem Pflanzenbau zugerechnet. Weitere 10 % der ausgebrachten Stickstoffmenge werden gemäß der Düngeverordnung – zuletzt geändert am 10. August 2021 (BGBI. I S. 3436) – der Folgefrucht zugewiesen.

Der restliche Anteil der N₂O-Emissionen wird der Tierhaltung (siehe Abschnitt 3.2) angelastet. Der von der Pflanze genutzte Gülle-N wird in Anlehnung an die Düngeverordnung (DüV 2021, § 3 Absatz 5 Nummer 2) bestimmt. Hierfür gilt die in Anlage 3 der DüV ausgewiesene Mindestwirksamkeit, mindestens jedoch der ermittelte Gehalt an Ammonium-Stickstoff (engl. total ammoniacal nitrogen, TAN). Daraus ergeben sich für das in Tabelle 3 aufgeführte Beispiel bei einer Mindestwirksamkeit von 60 % je Hektar 102 kg N-Mineraldüngeräquivalent (N-MDÄ), die mit der Gülle ausgebracht werden. Für den mineraldüngerwirksamen Stickstoff wird der laut Parameterdatei vorgeschlagene Emissionsfaktor in Höhe von 0,00854 kg N₂O-N/kg N (Durchschnittswert für mineralischen Boden, siehe S. 29 im Anhang) angesetzt. Dieser Emissionsfaktor fasst die direkten N₂O-Emissionen in die Luft und die indirekten N₂O-Emissionen durch Auswaschung zusammen. Nach Umrechnung des N₂O-N in N₂O und Anwendung des Umrechnungsfaktors GWP₁₀₀ von N₂O in CO₂e werden in diesem Beispiel in P_F3 362 kg CO₂e/ha durch N₂O-Emissionen aus der Düngung mit Wirtschaftsdüngern verursacht.

¹⁾ Innerhalb des BEK schließt der Begriff "Wirtschaftsdünger" auch andere organische Dünger, z.B. Gärrest, Kompost und Klärschlamm, ein.

²⁾ Wenn P_F9 und P_F10 verwendet werden, muss deren Bilanz getrennt ausgewiesen werden (siehe auch Tab. 4).

Tab. 3: Berechnungsbeispiel für die Treibhausgasquelle P_F3 " N_2O -Emissionen aus der Düngung mit Wirtschaftsdüngern" im Pflanzenbau (Beispiel Rindergülle)

Rechenschritt	Wert	Einheit	Datenherkunft
Ausgebrachte Wirtschaftsdüngermenge	34,00	m ³ /ha	Betrieb
· Stickstoffgehalt des Wirtschaftsdüngers	5,00	kg N/m ³	Betrieb
= Ausgebrachter Wirtschaftsdünger-N	170,00	kg N/ha	Ergebnis
$\cdot \ Minerald\"{unger} wirksamke it \ des \ ausgebrachten \ Wirtschaftsd\"{unger-N}$	60,00	0/0	DüV
= MDÄ des ausgebrachten Wirtschaftsdünger-N	102,00	kg N/ha	Ergebnis
N ₂ O EF für düngewirksamen Wirtschaftsdünger-N	0,00854	kg N ₂ O-N/kg N	Parameterdatei
· Umrechnungsfaktor	1,57	kg N ₂ O/kg N ₂ O-N	Parameterdatei
· Umrechnungsfaktor GWP ₁₀₀	265,00	kg CO ₂ e/kg N ₂ O	Parameterdatei
= CO ₂ e	362,41	kg CO ₂ e/ha	Ergebnis

DüV = Düngeverordnung; EF = Emissionsfaktor; GWP = Treibhausgaspotenzial; MDÄ = Mineraldüngeräquivalent

Auch bei der Düngung mit Gärrest, Kompost und Klärschlamm werden die N₂O-Emissionen, die nicht auf den für die betrachtete Acker- und die Folgefrucht verfügbaren Stickstoff zurückzuführen sind, der liefernden Stelle angelastet. In diesem Fall sind dies die Biogas-, Klär- oder Kompostierungsanlage. Für die Biogasanlage gilt, dass bei der Vergärung von Wirtschaftsdünger ein Anteil dieser Emissionen bereits in der Tierhaltung aufgeführt ist und nicht in die Bilanz der Biogasanlage übernommen wird.

In der ersten Version des BEK wurden die N_2O -Emissionen aus der organischen Düngung nicht zwischen dem Pflanzenbau und der liefernden Stelle aufgeteilt. In die Berechnung ging alleinig die mineraldüngerwirksame Stickstoffmenge ein. Dies hatte zur Folge, dass der organische Stickstoff, der nicht unmittelbar düngewirksam ist, nicht in die Ermittlung der N_2O -Emissionen einfloss. Ab der zweiten Version wurde dieser Mangel behoben.

Im Gegensatz zu den N_2O -Emissionen werden die NH_3 -Emissionen bei der Ausbringung von organischem Dünger und die daraus entstehenden indirekten N_2O -Emissionen vollständig dem Pflanzenbau zugerechnet.

In Tabelle 4 sind am Beispiel der Silomaiserzeugung die berechneten Treibhausgasemissionen für die einzelnen Quellen aufgeführt. Ergänzende Erläuterungen zu einzelnen Treibhausgasquellen des Pflanzenbaus finden sich im Anhang.

Tab. 4: Treibhausgasemissionen am Beispiel Silomaisanbau (12.600 kg/ha TM-Ertrag, 34 m³/ha Rindergülle)¹⁾

Emissionsart und -quelle	Wert kg CO ₂ e/ha
Direkte und indirekte Treibhausgasemissionen vom Feld (ohne anbaubedingten Humusaufbau und –abbau)	
P_F1 : N_2O -Emissionen aus NH_3 -Verlusten bei der Düngung mit Wirtschaftsdüngern	13,01
P _F 2: N ₂ O-Emissionen aus NH ₃ -Verlusten bei Düngung mit Mineraldüngern	1,46
P_F3 : N_2O -Emissionen aus der Düngung mit Wirtschaftsdüngern	362,41
P _F 4: N ₂ 0-Emissionen aus der Düngung mit Mineraldüngern	177,65
P_F 5: N_2 0-Emissionen aus Ernte- und Wurzelrückständen sowie aus Stroh- und Gründüngung	68,94
P _F 6: N ₂ O-Emissionen aus anzurechnendem Stickstoff aus organischer Düngung des Vorjahres	35,53
P _F 7: N ₂ O-Emissionen aus mineraldüngerwirksamen N-Ausscheidungen aus Beweidung	0,00
P _F 8: CO ₂ -Feldemissionen aus Kalk- und Harnstoffdüngung	398,16
P _F 11: CO ₂ -Emissionen bzwBindung bei Grünland- bzw. Ackerlandumwandlung	52,00
P _F 12: N ₂ 0-Emissionen bei Grünlandumwandlung in Ackerland	7,00
P _F 13: CO ₂ e-Emissionen aus Humusabbau bei der Bewirtschaftung organischer Böden	0,00
P _F 1 bis P _F 8 und P _F 11 bis P _F 13: Summe Treibhausgasemissionen vom Feld	1.116,16
Vorgelagerte Treibhausgasemissionen aus dem Betriebsmitteleinsatz	
P _B 1: CO ₂ e-Emissionen aus Mineraldüngerbereitstellung	440,46
$P_{B}2{:}\ CO_{2}e-Emissionen\ für\ mineraldüngerwirksame\ N\"{a}hrstofflieferung\ aus\ Wirtschaftsdüngereinsatz$	517,48
$\rm P_B3\colon CO_2e\text{-}Emissionen$ für mineraldüngerwirksame Nährstofflieferung der Vorfrucht und Ausscheidungen auf der Weide	0,00
P _B 4: CO ₂ e-Emissionen aus Saatgutbereitstellung	63,35
P _B 5: CO ₂ e-Emissionen aus Pflanzenschutzmittelbereitstellung	5,63
P _B 6: CO ₂ e-Emissionen aus Energiebereitstellung und -konversion	361,20
P _B 7: CO ₂ e-Emissionen aus Maschinenherstellung	32,48
P _B 8: CO ₂ e-Emissionen aus Werkstoffbereitstellung	0,00
P _B 1 bis P _B 8: Summe Treibhausgasemissionen aus Betriebsmitteleinsatz	1.420,60
Zusätzlich können getrennt ausgewiesen werden: Direkte Treibhausgasemissionen vom Feld aus anbaubedingten Humusaufbau und –abbau	
P _F 9: CO ₂ -Emissionen bzwBindung aus Humusabbau bzwaufbau der angebauten Fruchtart	2.936,00
P _F 10: N ₂ 0-Emissionen aus dem Humusabbau der angebauten Fruchtart	382,46
$P_{\text{F}}9$ bis $P_{\text{F}}10$: Summe Treibhausgasemissionen vom Feld aus anbaubedingten Humusaufbau und –abbau	3.318,46

P = Pflanzenbau; F = Feld; B = Betriebsmitteleinsatz

3.2 Treibhausgasquellen in der Tierhaltung

Für die Tierhaltung (T) werden in Tabelle 5 die Quellen für die THG-Emissionen aus Verdauung (Index "V"), die direkten und indirekten Emissionen aus Wirtschaftsdüngern (Index "W") sowie für die vorgelagerten Emissionen aus dem Betriebsmitteleinsatz (Index "B") aufgeführt. Die Zahlen kennzeichnen die laufende Nummer der Emissionsquelle.

¹⁾ Summenfehler sind aufgrund von Rundung möglich.

Tab. 5: Treibhausgasquellen in der Tierhaltung

Lfd. Nr.	Emissionsart und -quelle
	indirekte Treibhausgasemissionen aus enterischer Fermentation und Wirtschaftsdünger inklusive relevanter NH3-Emissionen
T _V 1	CH ₄ -Emissionen aus enterischer Fermentation
T _W 1	NH ₃ -Emissionen aus Stall/befestigtem Auslauf
$T_W 2$	NH ₃ -Emissionen aus Wirtschaftsdüngerlager
T _W 3	NH ₃ -Emissionen aus Weidehaltung
T_W4	N ₂ O-Emissionen aus Stall und Wirtschaftsdüngerlager
T _W 5	N ₂ O-Emissionen aus Weidehaltung
T _W 6	N ₂ O-Emissionen des nicht mineraldüngerwirksamen Stickstoffs
T _W 7	CH ₄ -Emissionen aus Wirtschaftsdüngerlager
T _W 8	CH ₄ -Emissionen aus Ausscheidungen auf der Weide
Vorgelagerte	Treibhausgasemissionen aus dem Betriebsmitteleinsatz
T _B 1	CO ₂ e-Emissionen aus Tierzugängen
T _B 2	CO ₂ e-Emissionen aus Kraftfuttermittelbereitstellung
T_B3	CO ₂ e-Emissionen aus Grundfuttermittelbereitstellung
T _B 4	CO ₂ e-Emissionen aus Mineralfutterbereitstellung
T _B 5	CO ₂ e-Emissionen aus Einstreubereitstellung
T _B 6	CO ₂ e-Emissionen aus Wassereinsatz (Tränke, Reinigung)
T _B 7	CO ₂ e-Emissionen aus Energiebereitstellung und -konversion
T _B 8	CO ₂ e-Emissionen aus Maschinenherstellung

T = Tierhaltung; V = Verdauung (enterische Fermentation); W = Wirtschaftsdünger; B = Betriebsmitteleinsatz

Tabelle 6 zeigt den detaillierten Rechenweg am Beispiel der CO₂e-Emissionen aus dem Energieeinsatz (T_B7). Neben dem Rechenweg wird in der rechten Spalte der Tabelle die Herkunft der Daten ausgewiesen. Den Stromverbrauch von 320 kWh/Kuh kann der Landwirt oder die Landwirtin aus der Jahresstromabrechnung ermitteln. Beim Bezug von herkömmlichem Strom wird der Emissionsfaktor für den deutschen Strommix aus der Parameterdatei verwendet. Für die Futtervorlage und Reinigungsarbeiten werden zusätzlich jährlich 30 l Diesel/Kuh benötigt. Der Dieselverbrauch für die Erzeugung des Grundfutters vom Anbau bis zur Einlagerung wird bereits beim Pflanzenbau berücksichtigt und darf hier nicht noch einmal eingerechnet werden. Der Emissionsfaktor für den Dieselverbrauch besteht aus zwei Komponenten: Erstens werden bei der Herstellung des Diesels Treibhausgasemissionen verursacht und zweitens entstehen Emissionen bei dessen Verbrennung. Aus praktischen Gründen werden im BEK beide Positionen zusammengefasst und dem Betriebsmitteleinsatz zugeschlagen. Beide Positionen zusammen betragen laut Emissionsfaktoren in der Parameterdatei 3,23 kg CO₂e/l Dieselverbrauch. In der Summe betragen die Treibhausgasemissionen aus dem Energieeinsatz somit gerundet 256 kg CO₂e/Kuh.

Tab. 6: Berechnungsbeispiel für die Treibhausgasquelle T_B7 " CO_2 e-Emissionen aus Energieeinsatz"

Rechenschritt	Wert	Einheit	Datenherkunft
Strom			
Stromverbrauch	320,00	kWh/Kuh	Betrieb
· Emissionsfaktor Strommix Deutschland	0,498	kg CO ₂ e/kWh	Parameterdatei
= CO ₂ e Strom	159,36	kg CO ₂ e/Kuh	Ergebnis
Diesel			
Dieselverbrauch	30,00	l Diesel/Kuh	Betrieb
· Emissionsfaktor Diesel	3,23	kg CO ₂ e/l Diesel	Parameterdatei
= CO ₂ e Diesel	96,9	kg CO ₂ e/Kuh	Ergebnis
= CO ₂ e Energieeinsatz (Strom + Diesel)	256,26	kg CO ₂ e/Kuh	Ergebnis

In Tabelle 7 sind am Beispiel der Milcherzeugung die berechneten Treibhausgasemissionen für die einzelnen Quellen aufgeführt. Ergänzende Erläuterungen zu einzelnen Treibhausgasquellen der Tierhaltung befinden sich im Anhang.

Tab. 7: Treibhausgasemissionen am Beispiel Milcherzeugung (9.200 kg ECM/(Kuh \cdot a))

Emissionsart und -quelle	Wert kg CO ₂ e/Kuh
Direkte und indirekte Treibhausgasemissionen aus enterischer Fermentation und Wirtschaftsdünger	
T _V 1: CH ₄ -Emissionen aus enterischer Fermentation	4.026,57
T _W 1: NH ₃ -Emissionen aus Stall/planbefestigtem Auslauf	42,95
T _W 2: NH ₃ -Emissionen aus Wirtschaftsdüngerlager	7,88
T _W 3: NH ₃ -Emissionen aus Weidehaltung	2,50
T _W 4: N ₂ 0-Emissionen aus Stall und Wirtschaftsdüngerlager	95,92
T _W 5: N ₂ 0-Emissionen aus Weidehaltung	48,13
T _W 6: N ₂ 0-Emissionen des nicht mineraldüngerwirksamen Stickstoffs	111,52
T _W 7: CH ₄ -Emissionen aus Wirtschaftsdüngerlager	992,27
T _W 8: CH ₄ -Emissionen aus Ausscheidungen auf der Weide	6,68
T_V 1, T_W 1 bis T_W 8: Summe THG aus enterischer Fermentation und Wirtschaftsdünger	5.334,42

Fortsetzung der Tabelle nächste Seite

Emissionsart und -quelle	Wert kg CO ₂ e/Kuh
Vorgelagerte Treibhausgasemissionen aus dem Betriebsmitteleinsatz	
T _B 1.1: CO ₂ e-Emissionen aus Tierzugängen	1.995,00
T _B 1.2: CO ₂ e-Emissionen aus Bestandsveränderungen	0,00
$T_B2.1$: CO_2 e-Emissionen aus Kraftfuttermittelbereitstellung (Selbsterzeugung)	0,00
T _B 2.2: CO ₂ e-Emissionen aus Kraftfuttermittelbereitstellung (Zukauf)	2.233,62
$T_B 3.1: CO_2 e-Emissionen \ aus \ Grundfuttermittelbereitstellung \ (Selbsterzeugung)$	1.980,00
T _B 3.2: CO ₂ e-Emissionen aus Grundfuttermittelbereitstellung (Zukauf)	235,00
T _B 4: CO ₂ e-Emissionen aus Mineralfutterbereitstellung	81,50
T _B 5: CO ₂ e-Emissionen aus Einstreubereitstellung	105,00
T _B 6: CO ₂ e-Emissionen aus Wassereinsatz	8,00
T _B 7: CO ₂ e-Emissionen aus Energiebereitstellung und Konversion	256,26
T _B 8: CO ₂ e-Emissionen aus Maschinenherstellung	8,70
T _B 1 bis T _B 8: Summe THG aus Betriebsmitteleinsatz	6.903,08

T = Tierhaltung; V = Verdauung (enterische Fermentation); W = Wirtschaftsdünger; B = Betriebsmitteleinsatz

3.3 Treibhausgasquellen in der Energiegewinnung aus Biogas

In der Biogaserzeugung (BG) werden die in Tabelle 8 aufgeführten direkten und indirekten Treibhausgasemissionen der Anlage (Index "A") sowie die vorgelagerten Emissionen aus dem Betriebsmitteleinsatz (Index "B") berücksichtigt. Die Zahlen kennzeichnen die laufende Nummer der Emissionsquellen.

Tab. 8: Treibhausgasquellen bei der Energiegewinnung aus Biogas

Lfd. Nr.	Emissionsart und -quelle			
Direkte und indirekte Treibhausgasemissionen aus der Biogasanlage				
BG _A 1	CH ₄ -Emissionen aus Wirtschaftsdüngervorlagerung an der Biogasanlage			
BG _A 2	CH ₄ -Emissionen aus Gärbehältern			
BG _A 3	CH ₄ -Emissionen aus Gärrestlagerung			
BG _A 4	CH ₄ -Emissionen aus BHKW-Schlupf oder Biomethanaufbereitung			
BG _A 5	N ₂ 0-Emissionen aus Wirtschaftsdüngervorlagerung an der Biogasanlage			
BG _A 6	NH ₃ -Emissionen aus Wirtschaftsdüngervorlagerung an der Biogasanlage			
BG _A 7	N ₂ 0-Emissionen aus Gärrestlagerung			
BG _A 8	NH ₃ -Emissionen aus Gärrestlagerung			
BG _A 9	N_2 O-Emissionen des nicht mineraldüngerwirksamen Stickstoffs aus der Vergärung nachwachsender Rohstoffe			

Fortsetzung der Tabelle nächste Seite

Lfd. Nr.	Emissionsart und -quelle	
Vorgelagerte	Treibhausgasemissionen aus dem Betriebsmitteleinsatz	
BG _B 1	CO ₂ e-Emissionen aus Maschinenherstellung	
BG _B 2	CO ₂ e-Emissionen aus Biogasanlagenherstellung	
BG _B 3	CO ₂ e-Emissionen aus Energiebereitstellung und -konversion	
BG _B 4	CO ₂ e-Emissionen aus Motorölverbrauch	
BG _B 5	CO ₂ e-Emissionen aus Substratbereitstellung	

BG = Biogaserzeugung; A = Anlage; B = Betriebsmitteleinsatz

Tabelle 9 zeigt den detaillierten Rechenweg am Beispiel der N₂O-Emissionen aus dem Gärrestlager (BG_A7). Neben dem Rechenweg wird in der rechten Spalte der Tabelle die Datenherkunft ausgewiesen. Die mit den Substraten in die Anlage eingebrachte Stickstoffmenge bildet die Grundlage für die Berechnung der N₂O-Emissionen aus der Gärrestlagerung. Nach den Grundsätzen der Massenbilanz werden die in BG_A5 und BG_A6 ermittelten Stickstoffverluste von der eingebrachten Stickstoffmenge abgezogen. Es wird davon ausgegangen, dass im Zuge des Gärprozesses in der Biogasanlage keine Stickstoffverluste auftreten. Die verbleibende Stickstoffmenge wird mit dem Emissionsfaktor aus der Parameterdatei multipliziert. Im Beispiel wird der Gärrest in einem offenen Behälter gelagert, sodass der Emissionsfaktor laut Parameterdatei 0,005 kg N₂O-N/kg N beträgt. Die Treibhausgasbelastung durch die offene Gärrestlagerung beträgt in der Abrechnungsperiode also 74.261 kg CO₂e.

Tab. 9: Berechnungsbeispiel für die Treibhausgasquelle BGA7 "N2O-Emissionen aus Gärrestlagerung"

Rechenschritt	Wert	Einheit	Datenherkunft
N-Menge in Rindergülle bei Anlieferung	9.873,60	kg N	BG _A 5
 N-Verluste durch N₂O-Emissionen aus Vorlager 	4,94	kg N ₂ O-N	BG _A 5
 N-Verluste durch NH₃-Emissionen aus Vorlager 	20,44	kg NH ₃ -N	BG _A 6
= N-Menge bei Eintritt der Gülle in den Gärbehälter	9.848,22	kg N	Ergebnis
Menge an Maissilage bei Anlieferung	5.500,00	t FM	Betrieb
· N-Gehalt in Maissilage	4,70	kg N/t FM	Betrieb, DüV
= N-Menge bei Eintritt in den Gärbehälter	25.850,00	kg N	Ergebnis
= Gesamt-N-Menge bei Eintritt ins Gärrestlager	35.698,22	kg N	Ergebnis
\cdot N_2 O-N-Emissionsfaktor für Gärrestlagerung	0,005	kg N ₂ O-N/kg N	Parameterdatei
= N ₂ O-N-Emissionen aus Gärrestlagerung	178,49	kg N ₂ O-N	Ergebnis
· Umrechnungsfaktor	1,57	kg N ₂ 0/kg N ₂ 0-N	Parameterdatei
· Umrechnungsfaktor GWP ₁₀₀	265,00	kg CO ₂ e/kg N ₂ O	Parameterdatei
= CO ₂ e	74.260,76	kg CO ₂ e	Ergebnis

DüV = Düngeverordnung; GWP = Treibhauspotenzial

In Tabelle 10 sind für die Biogaserzeugung die berechneten Treibhausgasemissionen für die einzelnen Quellen aufgeführt. Ergänzende Erläuterungen zu einzelnen Treibhausgasquellen der Energiegewinnung aus Biogas finden sich im Anhang.

Tab. 10: Treibhausgasemissionen der Biogaserzeugung

Emissionsart und -quelle	Wert kg CO ₂ e
BG _A 1: CH ₄ -Emissionen aus Wirtschaftsdüngervorlagerung	13.168
BG _A 2: CH ₄ -Emissionen aus Gärbehältern	126.726
BG _A 3: CH ₄ -Emissionen aus Gärrestlagerung	61.105
BG _A 4: CH ₄ -Emissionen aus BHKW-Schlupf oder Biomethanaufbereitung	125.458
BG _A 5: N ₂ O-Emissionen aus Wirtschaftsdüngervorlagerung	2.054
BG _A 6: NH ₃ -Emissionen aus Wirtschaftsdüngervorlagerung	85
BG _A 7: N ₂ O-Emissionen aus Gärrestlagerung	74.261
BG _A 8: NH ₃ -Emissionen aus Gärrestlagerung	4.678
BG _A 9: N ₂ O-Emissionen des nicht mineraldüngerwirksamen Stickstoffs	27.481
BG _A 1 bis BG _A 9: Summe THG aus Anlageemissionen	435.016
BG _B 1: CO ₂ e-Emissionen aus Maschinenherstellung	551
BG _B 2: CO ₂ e-Emissionen aus Biogasanlagenherstellung	37.500
BG _B 3: CO ₂ e-Emissionen aus Energiebereitstellung und Konversion	126.637
BG _B 4: CO ₂ e-Emissionen aus Motorölverbrauch	3.876
BG _B 5: CO ₂ e-Emissionen aus der Substratbereitstellung	1.009.878
BG _B 1 bis BG _B 5: Summe THG aus Betriebsmitteleinsatz	1.178.442

BG = Biogaserzeugung; A = Anlage; B = Betriebsmitteleinsatz

4 Aufteilung der entstandenen Treibhausgasemissionen auf Haupt- und Nebenprodukte

In der landwirtschaftlichen Erzeugung fallen neben dem Hauptprodukt in der Regel auch Nebenprodukte an. Beispielsweise wird im Getreideanbau neben dem Korn auch Stroh erzeugt und in der Milchkuhhaltung fallen neben der Milch zusätzlich Fleisch und Wirtschaftsdünger an. Die in der Produktion entstandenen Treibhausgasemissionen sind auf die Haupt- und Nebenprodukte aufzuteilen. Dazu gibt es unterschiedliche Herangehensweisen. Von Allokation spricht man, wenn die Emissionen des gesamten Prozesses nach einem bestimmten Schlüssel auf die Produkte aufgeteilt werden. Dies kann entsprechend der Produktmassen (physikalische Allokation, z. B. bei gleicher Produktionsmenge von A und B erhalten beide jeweils 50 % der Emissionen) oder auch anhand der am Markt erzielbaren Preise erfolgen (monetäre Allokation, z. B. Produkt A erzielt doppelt so hohe Erlöse wie B und erhält dementsprechend 2/3 der Emissionen).

Alternativ kann für das Nebenprodukt eine Emissionsgutschrift erteilt werden, und zwar in Höhe derjenigen Emissionen, die für die gleiche Menge des Nebenproduktes aus einem alternativen Produktionsverfahren anfallen würden (z.B. Emissionsgutschrift für Fleisch aus der Milchkuhhaltung entsprechend den Emissionen, die in der Fleischrinderhaltung entstehen würden). Die Treibhausgasbelastung für das Hauptprodukt errechnet sich bei dieser sogenannten Ersatzwertmethode aus der Differenz von verursachten Treibhausgasemissionen und Treibhausgasgutschriften für die Nebenprodukte. Dieser Ansatz wird im BEK angewendet. Er ist unabhängig von schwankenden Marktpreisen und reduziert zudem den Aufwand in der Datenerhebung.

In Tabelle 11 sind die Nebenprodukte (Index "N") aufgeführt, für die im Pflanzenbau (P), in der Tierhaltung (T) und bei der Biogaserzeugung (BG) die Emissionsgutschriften angewendet werden. Die Zahlen kennzeichnen jeweils die laufende Nummer der Gutschrift.

Tab. 11: Treibhausgasgutschriften für Nebenprodukte

Lfd. Nr.	Emissionsart und -quelle				
Pflanzenbau	Pflanzenbau – Gutschriften bei der angebauten Fruchtart für				
P _N 1	CO ₂ -Bindung durch Humusaufbaupotenzial der Nebenernteprodukte (Stroh, Kraut)				
P _N 2	CO ₂ e-Ersatzwert der Nährstofflieferung für die Folgefrucht (Stroh, Kraut, Vorfruchtwert)				
Tierhaltung	(Beispiel Milcherzeugung) – Gutschriften bei dem erzeugenden Betriebszweig für				
T _N 1	CO ₂ e-Ersatzwert für die mineraldüngerwirksamen Nährstoffe im Wirtschaftsdünger				
T _N 2	CO ₂ -Bindung durch Humusaufbaupotenzial des Wirtschaftsdüngers				
T _N 3	CO ₂ e-Ersatzwert für lebend geborene Kälber				
T _N 4	CO ₂ e-Ersatzwert für Schlachtrinder				
Biogaserzeugung – Gutschriften für					
BG _N 1	CO ₂ e-Ersatzwert für bereitgestellte und genutzte Wärme bei Stromerzeugung				
BG _N 2	CO ₂ e-Ersatzwert für die mineraldüngerwirksamen Nährstoffe im Gärrest				
BG _N 3	CO ₂ -Bindung durch Humusaufbaupotenzial des Gärrestes				

 $P = Pflanzenbau; \, N = Nebenprodukte; \, T = Tierhaltung; \, BG = Biogaserzeugung$

Tabelle 12 zeigt den detaillierten Rechenweg der Gutschrift für das Nebenprodukt "Schlachtkuh" in der Milcherzeugung. Im Beispiel sind je durchschnittlich gehaltener Kuh 189,0 kg Lebendmasse (LM) in die Schlachtung gegeben worden (Ausschlachtung bei Schlachtkühen 51 % gegenüber 56 % beim Schlachtrind). Der Wert errechnet sich aus der Anzahl der geschlachteten Milchkühe multipliziert mit dem "Gewicht einer Schlachtkuh", geteilt durch die Anzahl durchschnittlich gehaltener Milchkühe. Nach Abzug der Schlachtverluste verbleiben 96,4 kg Schlachtgewicht (SG) je Kuh. In LWK Niedersachsen (2021, S. 19) kann der Vorleistungswert – der THG-Rucksack – für die Mastrinderzeugung mit 8,6 kg CO₂e/kg Lebendmasse entnommen werden. Bei einer Ausschlachtung von 56 % ergibt sich daraus ein Emissionsersatzwert von 15,4 kg CO₂e/kg Schlachtgewicht. Die Gutschrift für das Nebenprodukt Schlachtkuh beträgt im Beispiel demzufolge 1.482,48 kg CO₂e/Kuh.

Tab. 12: Berechnungsbeispiel für die Treibhausgasgutschrift eines Nebenproduktes (Beispiel TN_4 "THG-Gutschrift für Schlachtkühe")

Rechenschritt	Wert	Einheit	Datenherkunft
Schlachtkühe (Lebendmasse)	189,00	kg LM/Kuh	Betrieb
· Ausschlachtung	0,51	kg SG/kg LM	Betrieb
= Schlachtkühe (Schlachtgewicht)	96,39	kg SG/Kuh	Ergebnis
· Gutschrift SG Rinder	15,38	kg CO ₂ e/kg SG	Parameterdatei
= CO ₂ e-Gutschrift	1.482,48	kg CO ₂ e/Kuh	Ergebnis

LM = Lebendmasse; SG = Schlachtgewicht

Ergänzende Erläuterungen zu einzelnen Treibhausgasgutschriften für Nebenprodukte finden sich im Anhang.

Treibhausgasflüsse zwischen Produktionsverfahren, Umgang mit Nebenprodukten und Bewertung von Humus-C-Veränderungen

Landwirtschaftliche Produkte werden häufig innerhalb eines Betriebes oder zwischen verschiedenen Betrieben von einem Betriebszweig an einen anderen weitergegeben. In diesen Fällen ist es wichtig, dass sie beim abgebenden und aufnehmenden Betriebszweig mit den gleichen Treibhausgasemissionen bewertet werden. Bei Hauptprodukten betrifft das zum Beispiel das Futter. Die ermittelten Treibhausgasemissionen je kg Weizen oder Maissilage müssen bei einer Verfütterung in der Tierhaltung dort in gleicher Höhe beim Betriebsmitteleinsatz einfließen, wie sie im Pflanzenbau veranschlagt werden.

Bei den Nebenprodukten treten ebenfalls eine Reihe solcher Verknüpfungen zwischen den Produktionsverfahren auf. Abbildung 2 gibt einen Überblick über relevante Treibhausgasverknüpfungen verschiedener Produktionsverfahren.

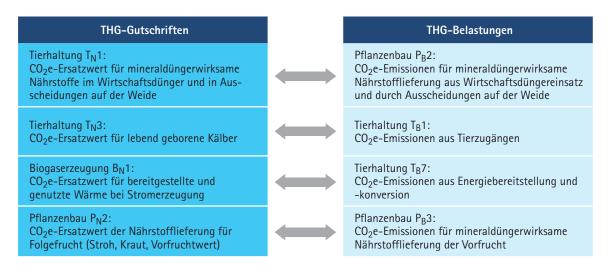
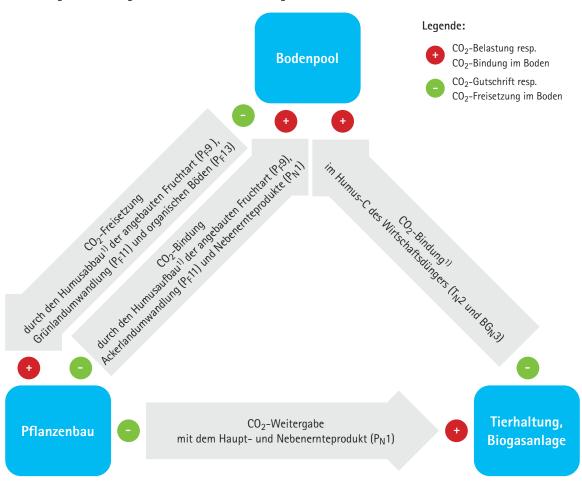


Abb. 2: Beispiele für Verknüpfungen zwischen Produktionsverfahren (© Agru BEK)


Wird zum Beispiel Wirtschaftsdünger vom Produktionsverfahren Milchkuhhaltung an das Produktionsverfahren Silomaisanbau abgegeben, ist sicherzustellen, dass die Nährstofflieferung des Wirtschaftsdüngers in beiden Produktionsverfahren gleich bewertet wird. Im Falle der Gülle wird deren Mineraldüngeräquivalent ermittelt, und es werden die für die gleiche Düngewirkung ansonsten in der Mineraldüngerproduktion anfallenden Emissionen errechnet. Der Betriebszweig Milchkühe erhält eine Gutschrift unter T_N1 und der Pflanzenbau eine Emissionsbelastung in gleicher Höhe unter P_B2 . Die Bewertung der Nährstoffflüsse ermöglicht einen Vergleich von Produktionsverfahren mit unterschiedlichen Düngungsvarianten, der die Grundlage für gezielte Beratungsempfehlungen darstellt.

Humusveränderungen, z.B. durch den Anbau von Kulturpflanzen (siehe P_F9) sowie durch die Zufuhr von Nebenernteprodukten (siehe P_N1) und organischen Düngern (siehe T_{N2} und BG_N3), werden in der Treibhausgasberechnung separat berücksichtigt. Sie machen einen erheblichen Anteil an den Gesamtemissionen aus und können vom Landwirt oder der Landwirtin durch die Fruchtfolgegestaltung beeinflusst werden. Nach Ansicht der Arbeitsgruppe BEK ist die Bewertung der Humus-C-Veränderungen für eine sachgerechte Bewertung der Treibhausgasemissionen sinnvoll, auch um Nutzungsalternativen von Nebenernteprodukten zur Humusreproduktion oder zur energetischen Verwertung (hier insbesondere die Getreidestrohverbrennung) umfassend bewerten zu können. Methoden zur Ermittlung der Humus-C-Ver-

änderungen und der Einbezug von deren Ergebnissen in Treibhausgasbilanzen werden derzeit umfassend diskutiert. In einem ersten Schritt wird im BEK zur Berücksichtigung der Humusveränderungen das Verfahren nach VDLUFA (2014) angewendet, wobei die mit dem Verfahren verbundenen Einschränkungen bei der Interpretation der Ergebnisse zu beachten sind. Beim Vorliegen genauerer Bilanzierungsansätze sind diese zu bevorzugen. Für die Gewährleistung einer transparenten Darstellung müssen die Auswirkungen durch Humusveränderungen separat ausgewiesen und deutlich kommuniziert werden.

Für das Humusaufbaupotenzial von organischem Material erhält der abgebende Prozess Gutschriften nach VDLUFA (2014). Dem Pflanzenbau werden somit bei der Weitergabe von Stroh entsprechende CO₂e gutgeschrieben, genauso wie der Tierhaltung für das Humusaufbaupotenzial der Wirtschaftsdünger.

Diese Gutschrift ist unabhängig davon, ob Stroh oder Wirtschaftsdünger auf der Fläche des Pflanzenbaus ausgebracht werden oder den Betrieb verlassen. Folglich zeigt der aus der Emissionsbilanz errechnete CO₂e-Fußabdruck eines pflanzenbaulichen Produktes nicht, in welchem Maße die Humusbilanz des Bodens ausgeglichen ist. Aus diesem Grund sollte bei allen Bilanzierungen pflanzenbaulicher Verfahren der Humussaldo des Bodens mit ausgewiesen werden. Ist der Humussaldo stark negativ, geht also Humuskohlenstoff in erheblichem Maße verloren, so ist ein Produktionsverfahren nicht nachhaltig. Der Humussaldo des Bodens muss im Rahmen einer Fruchtfolge ausgeglichen werden. Abbildung 3 zeigt das Schema der Treibhausgasbewertung von Humus-C-Veränderungen nach BEK.

1) Bestimmung der Humus-C-Veränderungen erfolgt nach VDLUFA (2014).

Abb. 3: Treibhausgasbewertung von Humus-C-Veränderungen im BEK

Humus-C-Flüsse werden mit ihrem CO_2 -Potenzial bewertet (Faktor 3,67 kg CO_2 /kg Humus-C). Die Humus-C-Mengen werden nach VDLUFA (2014) ermittelt. Erzeugende Produktionsverfahren von Humus-C erhalten eine CO_2 -Gutschrift; abnehmende Produktionsverfahren von Humus-C bzw. verursachende Produktionsverfahren von Humus-C-Abbau werden mit dem CO_2 -Potenzial des Humus-C belastet.

Beispielhafte Darstellung der Humusbewertung:

- a) Weizenanbau führt im Boden zu einem Humus-C-Abbau. Als Verursacher dieses Abbaus wird der Weizen mit dem CO₂-Potenzial belastet und der Boden als Bereitsteller des Humuskohlenstoffs erhält die Gutschrift.
- b) Der Weizen liefert als Nebenernteprodukt Stroh und damit Humus-C. Der Weizen als Erzeuger des Strohs erhält folglich die Gutschrift, und zwar unabhängig davon, was mit dem Stroh anschließend geschieht. Die Lastschrift erhält in jedem Fall das abnehmende Produktionsverfahren. Bei einer Strohdüngung ist der Boden Abnehmer und erhält die Lastschrift. Bei einer Strohabfuhr ist das CO₂-Potenzial des Humuskohlenstoffs im "CO₂-Rucksack" des Strohs enthalten und gelangt so als Lastschrift zum aufnehmenden Verfahren, zum Beispiel als Einstreu für die Milchkuhhaltung.
- c) Die Milchkuhhaltung wird mit dem "THG-Rucksack" des Strohs belastet. Sie erzeugt als Nebenprodukt Wirtschaftsdünger, der Humus-C enthält. Als erzeugendes oder bereitstellendes Produktionsverfahren dieses Humuskohlenstoffs erhält die Milchkuhhaltung die Gutschrift. Die Lastschrift erhält in jedem Fall das abnehmende Produktionsverfahren. Bei einer Abgabe des Wirtschaftsdüngers an eine Biogasanlage erfolgt die Lastschrift mit dem "CO₂-Rucksack" bei der Biogasanlage. Bei direkter Ausbringung auf die Fläche erfolgt die Lastschrift beim Boden. Damit ist der Kreislauf geschlossen und kann wieder mit "a)" beginnen.
- d) Für die Darstellung des Humussaldos des Bodens werden nach VDLUFA (2014) der Humusabbau oder der Humusaufbau der angebauten Kultur und das Humusaufbaupotenzial der aufgebrachten Nebenprodukte und Wirtschaftsdünger miteinander verrechnet.

6 Ermittlung des produktbezogenen CO₂-Fußabdrucks

Die Treibhausgasberechnung nach BEK erfolgt aus praktischen Gründen zunächst tier- bzw. flächenbezogen. Zur Beurteilung der einzelbetrieblichen Klimaeffizienz in dem jeweiligen Produktionsverfahren werden die THG-Emissionen auf die erzeugte Produkteinheit bezogen (sogenannter CO₂-Fußabdruck). Die Tabellen 13 bis 15 zeigen den CO₂-Fußabdruck von Berechnungsbeispielen.

Bei der Maissilageerzeugung fallen keine Gutschriften für Nebenernteprodukte an. Die Treibhausgasemissionen aus dem Feld und dem Betriebsmitteleinsatz sind in voller Höhe der erzeugten Maissilage anzulasten. Bei 12.600 kg Trockenmasseertrag/ha und 2.536 kg $\rm CO_2e/ha$ beläuft sich der $\rm CO_2$ -Fußabdruck entsprechend auf 0,201 kg $\rm CO_2e/kg$ Trockenmasse in der Maissilage.

Tab. 13: $\rm CO_2$ -Fußabdruck der Maissilageerzeugung (12,6 t/ha Trockenmasseertrag) mit getrennter Ausweisung der Treibhausgasemissionen aus anbaubedingten Humusaufbau und -abbau

	Wert	Einheit
Direkte und indirekte Treibhausgasemissionen vom Feld	1.115,66	kg CO ₂ e/ha
Direkte Treibhausgasemissionen vom Feld aus anbaubedingten Humusaufbau und -abbau	3.318,46	kg CO ₂ e/ha
Vorgelagerte Treibhausgasemissionen aus dem Betriebsmitteleinsatz	1.420,60	kg CO ₂ e/ha
Treibhausgasgutschriften für Nebenernteprodukte	0	kg CO ₂ e/ha
davon Humusaufbaupotenzial	0	kg CO ₂ e/ha
Treibhausgasemissionen für das Hauptprodukt mit anbaubedingten Humusabbau oder -aufbau	5.854,72	kg CO ₂ e/ha
Treibhausgasemissionen für das Hauptprodukt ohne anbaubedingten Humusabbau oder -aufbau	2.536,26	kg CO ₂ e/ha
Trockenmasseertrag Hauptprodukt	12.600	kg TM/ha
CO ₂ -Fußabdruck ohne anbaubedingten Humusabbau oder -aufbau	0,201	kg CO ₂ e/kg TM
CO ₂ -Fußabdruck mit anbaubedingten Humusabbau oder -aufbau	0,465	kg CO ₂ e/kg TM
Humussaldo der Fläche	-406,10	kg Humus-C/ha

Trotz Einsatz von 34 m³ Rindergülle hat der Maisanbau im Beispiel einen negativen Humussaldo in Höhe von 406 kg Humus-C/ha zu verzeichnen. Dieser negative Humussaldo deutet auf einen Humusabbau im Boden und damit einhergehende Kohlenstoffverluste in die Atmosphäre hin. Um den Humussaldo auszugleichen, muss dem Boden in der Fruchtfolge ergänzend organische Substanz zugeführt werden.

Bei der Milcherzeugung fallen regelmäßig Nebenprodukte an. Im Beispiel sind für die Nebenprodukte Kalb, Schlachtkuh und Wirtschaftsdünger insgesamt 2.244 kg $\rm CO_2e/Kuh$ von den angefallenen Treibhausgasemissionen abzuziehen. Die verbleibenden 9.993 kg $\rm CO_2e/Kuh$ sind der Milcherzeugung anzulasten und verursachen bei 9.200 kg Milchleistung und Einbezug des Humusaufbaupotenzials des Wirtschaftsdüngers einen $\rm CO_2$ -Fußabdruck von 1,086 kg $\rm CO_2e/kg$ Milch.

Tab. 14: CO_2 -Fußabdruck der Milcherzeugung (9.200 kg ECM/(Kuh · a))

	Wert	Einheit
Treibhausgasemissionen aus Wirtschaftsdünger und enterischer Fermentation	5.334,41	kg CO ₂ e/Kuh
Vorgelagerte Treibhausgasemissionen aus dem Betriebsmitteleinsatz	6.903,08	kg CO ₂ e/Kuh
Treibhausgasgutschriften für Nebenprodukte	-3.102,82	kg CO ₂ e/Kuh
davon Humusaufbaupotenzial des Wirtschaftsdüngers	-858,78	kg CO ₂ e/Kuh
Treibhausgasemissionen für das Hauptprodukt (Milch) mit Humusaufbaupotenzial des Wirtschaftsdüngers	9.134,67	kg CO ₂ e/Kuh
Treibhausgasemissionen für das Hauptprodukt (Milch) ohne Humusaufbaupotenzial des Wirtschaftsdüngers	9.993,45	kg CO2e/Kuh
Milchleistung	9.200,00	kg ECM/Kuh
CO ₂ -Fußabdruck ohne Humusaufbaupotenzial des Wirtschaftsdüngers	1,086	kg CO ₂ e/kg ECM
CO ₂ -Fußabdruck mit Humusaufbaupotenzial des Wirtschaftsdüngers	0,993	kg CO ₂ e/kg ECM

Bei der Energiegewinnung aus Biogas werden neben Strom als Nebenprodukte Wärme und Gärreste erzeugt. Die Treibhausgasgutschrift für diese beiden Nebenprodukte beträgt im Beispiel 617.510 kg $\rm CO_2e$. Für die Stromerzeugung verbleiben 1.270.691 kg $\rm CO_2e$. Bei 2,5 Mio. kWh Stromeinspeisung beläuft sich der $\rm CO_2$ -Fußabdruck auf 0,508 kg $\rm CO_2e$ /kWh Strom.

Tab. 15: CO₂-Fußabdruck der Stromerzeugung aus Biogas

	Wert	Einheit
Treibhausgasemissionen aus der Anlage	435.016	kg CO ₂ e
Treibhausgasemissionen aus Betriebsmitteleinsatz	1.178.784	kg CO ₂ e
Treibhausgasgutschrift für Nebenprodukte	- 617.510	kg CO ₂ e
davon Humusaufbaupotenzial des Gärrestes	-276.401	kg CO ₂ e
THG-Emissionen für das Hauptprodukt mit Humusaufbaupotenzial des Gärrestes	995.949	kg CO ₂ e
THG-Emissionen für das Hauptprodukt ohne Humusaufbaupotenzial des Gärrestes	1.270.691	kg CO ₂ e
Eingespeiste Strommenge	2.500.000	kWh
CO ₂ -Fußabdruck ohne Humusaufbaupotenzial des Gärrestes	0,508	kg CO ₂ e/kWh
CO ₂ -Fußabdruck mit Humusaufbaupotenzial des Gärrestes	0,398	kg CO ₂ e/kWh

Die Treibhausgasvermeidung durch eine gasdichte Wirtschaftsdüngerlagerung wird bereits bei den Tierhaltungsverfahren berücksichtigt. Im ${\rm CO_2}$ -Fußabdruck der Energiegewinnung aus Biogas ist diese Minderungswirkung deshalb nicht enthalten. Für die Bewertung des Nutzens der Wirtschaftsdüngervergärung ist diese durch die Biogasgewinnung ermöglichte Treibhausgasminderung allerdings zu beachten.

7 Anleitung zum Gebrauch der Parameterdatei

Die Parameterdatei umfasst Emissionsfaktoren für die Treibhausgasbilanzierung und Begleitwerte, die für die Berechnung von Treibhausgasbilanzen benötigt werden. Sie kann als webbasierte Datenbank über die KTBL-Webseite kostenfrei genutzt werden.

Die Abfrage wird in der BEK-Parameterdatei mehrstufig durchgeführt. Die erste Auswahlstufe beinhaltet neben den allgemeinen Umrechnungsfaktoren die in Abbildung 4 gezeigten Hauptkategorien, zum Beispiel die Tierart "Rind". Die zweite Auswahlstufe grenzt die Unterkategorie, zum Beispiel "Milchkuhhaltung", ein. Die dritte Auswahlstufe führt den Prozess bzw. den Ort der Emissionsentstehung auf, zum Beispiel "Wirtschaftsdüngerlager". Ab der zweiten Auswahlstufe ist es möglich, durch die Auswahl "[alle]" die kompletten Datensätze der jeweiligen bereits getroffenen Auswahl anzeigen zu lassen. Nicht jede Auswahlkombination enthält Datensätze bis zur dritten Auswahlstufe. Abfragen können mit verschiedenen Auswahlkriterien mehrfach hintereinander durchgeführt werden. Die Ergebnistabellen werden dann untereinander dargestellt.

Das Abfrageergebnis wird als Tabelle ausgegeben und enthält im Tabellenkopf die Abfragekombination und in der Tabelle selbst Textfelder mit den Parametern, den Beschreibungen, dem Wert mit zugehöriger Einheit und die Datenquelle als Kurzzitat. Das Langzitat der Datenquelle kann in der Onlinedarstellung der Ergebnistabelle als Tooltip-Textfeld durch Überstreichen des Buch-Symbols hinter dem Kurzzitat angezeigt werden. Sofern weitere Informationen zu einzelnen Werten vorliegen (z. B. ein Verweis auf dieses Dokument), werden diese über das Symbol hinter dem Parameter angezeigt.

Die Ergebnistabellen können als pdf-Dokument und als xlsx-Datei heruntergeladen und gespeichert werden. Neben numerischen Werten können Formeln oder der Ausdruck "Anhang DüV" als Werte der angezeigten Datensätze enthalten sein.

1. Auswahlstufe: Tierart/Hauptkategorie	rt/Hauptkatego	rrie							
Betriebsmittel und Maschinen	Biogas- erzeugung	Pflanzenbau	Rind	Schwein	Huhn	Pute	Pferd	Schaf	Ziege
2. Auswahlstufe: Tierkategorie/Unterkategorie	itegorie/Unterka	itegorie							
Einstreu Energiebereitstellung ukonversion Kalk Maschinen Mineraldünger Pflanzenschutzmittel Saatgut und Pflanzgut Tierzugang Wasser (Zu- oder Verkauf) Zukauffuttermittel [alle]	Substrat Vorlager Gärbehälter Gärrestlager Anlagen- technik Wirtschaffs- düngeraus- bringung Gärrest [alle]	Landnutzungsänderung Organische Böden Stickstoffdüngung Wirtschaftsdüngerausbringung Kalkung Emte- und Wurzelrückstände [alle]	Milchkuhhaltung Rindermast Kälberhaltung Jungrinderhaltung Mutterkuhhaltung Deckbullenhaltung Wirtschaftsdüngerausbringung Rind [alle]	Sauenhaltung Sauenhaltung – Eber Ferkelaufzucht Schweinemast Wirtschaftsdünger- ausbringung Schwein [alle]	Legehennenhaltung Hühnermast Wirtschafts- düngeraus- bringung Huhn [alle]	Putenmast Wirtschafts- dünger- ausbringung Pute [alle]	Pferdehal- tung Ponyhaltung Wirtschafts- düngeraus- bringung Pferd [alle]	• Schafhaltung • Lämmerauf- zucht • Wirtschafts- düngeraus- bringung Schaf • [alle]	• Ziegenhal- tung • Wirtschafts- düngeraus- bringung Ziege • [alle]
3. Auswahlstufe: Prozess/Ort der Emissionsentstehung	ss/Ort der Emiss	ionsentstehung							
		Ackerbau			• Tier				
		Dauergrünland			• Stall				
		Gärrest			Weide	41			
		 Wirtschaftsdünger von Rindern 			• Wirts	 Wirtschaftsdüngerlager 			
		 Wirtschaftsdünger von Schweinen 							
		 Wirtschaftsdünger von Hühnern 							
		 Wirtschaftsdünger von Puten 							
		 Wirtschaftsdünger von Pferden 							
		 Wirtschaftsdünger von Schafen 							
		Wirtschaftsdünger Von Ziegen							
		• [alle]							
1. Act 2000 100 100 100 100 100 100 100 100 10	V 0:10	Janes Clark							

Abb. 4: Abfrageschema für die Anwendung der Parameterdatei

8 Zusammenfassung

Mithilfe des BEK, bestehend aus dem Handbuch und der Parameterdatei können Interessentinnen und Interessenten Treibhausgasberechnungen selbst durchführen, eigene EDV-Programme nach dem BEK entwickeln oder bereits bestehende EDV-Programme mit dem BEK abgleichen. Der BEK ermöglicht es, einzelbetriebliche Treibhausgasberechnungen für unterschiedliche Produktionsverfahren nach einem standardisierten und transparenten Verfahren durchzuführen. Mit der Treibhausgasberechnung auf Ebene der Produktionsverfahren können gezielt Potenziale zur Verbesserung der Klimabilanz identifiziert werden.

Besonders zu erwähnen ist das im BEK gewählte Verfahren für die Bewertung der Nebenprodukte und Veränderungen des Humus-C: Es gewährleistet bei einer Übertragung zwischen verschiedenen Produktionsverfahren innerhalb eines Betriebes oder zwischen verschiedenen Betrieben eine konsistente Bewertung ohne Bilanzierungsbrüche.

In der Parameterdatei werden die für die Berechnung von Treibhausgasbilanzen benötigten Emissionsfaktoren und Begleitwerte zur Verfügung gestellt.

Der BEK liefert somit die Vorlage für einzelbetriebliche Treibhausgasberechnungen nach einem definierten Standard. Die methodische Aufbereitung für eine Klimaschutzberatung landwirtschaftlicher Betriebe ist hingegen nicht Gegenstand des BEK.

Literatur

- Bachmaier, J. (2013): Treibhausgasemissionen und fossiler Energieverbrauch landwirtschaftlicher Biogasanlagen. Eine Bewertung auf Basis von Messdaten mit Evaluierung der Ergebnisunsicherheit mittels Monte-Carlo-Simulation. Dissertation, Universität für Bodenkultur Wien
- Becker, H.; Schmid, H.; Beisecker, R. (2018): HUNTER Developing, Testing and Introducing an Excel Tool for sustainability benchmarking in plant production. In: International Conference on Agricultural GHG Emissions and Food Security Connecting research to policy and practice, 10.–13.09.2018, Berlin, p. 31
- Cederberg, C.; Meyer, D.; Flysjö, A. (2009): Life cycle inventory of greenhouse gas emissions and use of land and energy in Brazilian beef production. SIK-report 792, https://www.researchgate.net/publication/242518937_Life_cycle_inventory_of_greenhouse_gas_emissi- ons_and_use_of_land_and_energy_in_Brazilian_beef_production, access 14.10.2020
- DLG (2020): Berücksichtigung N- und P-reduzierter Fütterungsverfahren bei den Nährstoffausscheidungen von Milchkühen. DLG-Merkblatt 444, Frankfurt am Main, DLG-Verlags-GmbH, 1. Aufl.
- DLG (2014): Bilanzierung der Nährstoffausscheidungen landwirtschaftlicher Nutztiere. Arbeiten der DLG 199, Frankfurt am Main, DLG-Verlags-GmbH, 2. Aufl.
- DüV (2021): Düngeverordnung vom 26. Mai 2017 (BGBl. I S. 1305), die zuletzt durch Artikel 97 des Gesetzes vom 10. August 2021 (BGBl. I S. 3436) geändert worden ist
- ecoinvent (2019): ecoinvent Database. Version 3.6. ecoinvent Association, https://ecoinvent.org/the-ecoinvent-database/, access 12.01.2023
- EEA (2019): EMEP/EEA air pollutant emission inventory Guidebook 2019. Technical guidance to prepare national emission inventories. EEA Report No 13/2019, Luxembourg, European Environment Agency, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019, access 10.12.2019
- FAO (2022): FAOSTAT. FAO Statistics division. Detailed trade matrix. Federal Agriculture Organization, https://www.fao.org/faostat/en/#data/TM, access 10.01.2023
- Fertilizers Europe (2024): Fertilizers Europe Carbon Footprint Calculator for Fertilizer Products. https://www.fertilizerseurope.com/initiatives/carbon-footprint-calculator/, access 06.12.2024
- Geldermann, J.; Schmehl, M.; Hesse, M. (2012): Ökobilanzielle Bewertung von Biogasanlagen unter Berücksichtigung der niedersächsischen Verhältnisse. Göttingen, Georg-August-Universität Göttingen
- Gensior, A. (2020): Mündliche Mitteilung. Braunschweig, Thünen-Institut für Agrarklimaschutz
- Hülsbergen, K.-J.; Schmid, H.; Paulsen, H.M. (Hg.) (2022): Steigerung der Ressourceneffizienz durch gesamtbetriebliche Optimierung der Pflanzen- und Milchproduktion unter Einbindung von Tierwohlaspekten. Untersuchungen in einem Netzwerk von Pilotbetrieben. Thünen Report 92, Braunschweig
- Hundt, B. (2010): Energie- und Klimaeffizienz von Biogasanlagen mit Biogasaufbereitung und -einspeisung unter Nutzung von Silomais. Untersuchungen am Beispiel der Biogasanlage der HSE AG in Darmstadt-Wixhausen. Boden und Landschaft, Schriftenreihe zur Bodenkunde, Landeskultur und Landschaftsökologie Band 55, Gießen, Justus-Liebig-Universität
- IPCC (2006): 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and other Land Use. Hayama, Japan, Intergovernmental Panel on Climate Change, https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html, access 14.10.2020
- IPCC (2015): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, Intergovernmental Panel on Climate Change
- IPCC (2019): Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4 (AFOLU), Chapter 11: N₂O Emissions from Managed Soils, and CO₂ Emissions from Lime and Urea Application. Hayama, Japan, Intergovernmental Panel on Climate Change, https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html, access 16.04.2024

- KTBL (2020): Betriebsplanung Landwirtschaft 2020/21. KTBL-Datensammlung, Darmstadt, Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V., 27. Aufl.
- KTBL (2010): European Biogas Initiative to improve the yield of agricultural biogas plants. Deliverable 22: Report on the economic value and the calculated energy and material fluxes. Darmstadt, Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V., https://cordis.europa.eu/project/id/19884, access 06.12.2024
- LWK Niedersachsen (2021): Treibhausgasbericht der Landwirtschaft in Niedersachsen. Ausgabe 2021. Oldenburg, Landwirtschaftskammer Niedersachsen, https://www.lwk-niedersachsen.de/download.cfm/file/35874.html, Zugriff am 10.03.2021
- Mathivanan, G.P.; Eysholdt, M.; Zinnbauer, M.; Rösemann, C.; Fuß, R. (2021): New N₂O emission factors for crop residues and fertiliser inputs to agricultural soils in Germany. Agriculture, Ecosystems & Environment 322, 107640, https://www.doi.org/10.1016/j.agee.2021.107640
- Meyer-Aurich, A.; Schattauer, A.; Hellebrand, H.J.; Klauss, H.; Plöchl, M.; Berg, W. (2012): Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renewable Energy 37(1), pp. 277–284, https://www.doi.org/10.1016/j.renene.2011.06.030
- Plöchl, M.; Schulz, M. (2006): Ökologische Bewertung der Biogaserzeugung und -nutzung. In: Biogas in der Landwirtschaft. Leitfaden für Landwirte und Investoren im Land Brandenburg, Potsdam, Ministerium für Ländliche Entwicklung, Umwelt und Verbraucherschutz des Landes Brandenburg, 3. Aufl., S. 49–52
- Rösemann, C.; Haenel, H.-D.; Vos, C.; Dämmgen, U.; Döring, U.; Wulf, S.; Eurich-Menden, B.; Freibauer, A.; Döhler, H.; Schreiner, C.; Osterburg, B.; Fuß, R. (2021): Calculations of gaseous and particulate emissions from German agriculture 1990 2019. Report on methods and data (RMD) Submission 2021. Thünen Report, Braunschweig, Johann Heinrich von Thünen-Institut
- Tiemeyer, B.; Freibauer, A.; Borraz, E.A.; Augustin, J.; Bechtold, M.; Beetz, S.; Beyer, C.; Ebli, M.; Eickenscheidt, T.; Fiedler, S.; Förster, C.; Gensior, A.; Giebels, M.; Glatzel, S.; Heinichen, J.; Hoffmann, M.; Höper, H.; Jurasinski, G.; Laggner, A.; Leiber-Sauheitl, K.; Peichl-Brak, M.; Drösler, M. (2020): A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation and application. Ecological Indicators 109, 105838, https://www.doi.org/10.1016/j.ecolind.2019.105838
- UBA (2023): Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2023. Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990 2021. Climate Change 28/2023, Dessau-Roßlau, Umweltbundesamt, https://www.umweltbundesamt.de/publikationen/berichterstattung-unterder-klimarahmenkonvention-8, Zugriff am 14.06.2024
- VDLUFA (2014): Standpunkt Humusbilanzierung. Eine Methode zur Analyse und Bewertung der Humusversorgung von Ackerland. Speyer, Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, https://www.vdlufa.de/wp-content/uploads/2021/05/11-Humusbilanzierung.pdf, Zugriff am 13.10.2020
- Vos, C.; Rösemann, C.; Haenel, H.-D.; Dämmgen, U.; Döring, U.; Wulf, S.; Eurich-Menden, B.; Freibauer, A.; Döhler, H.; Steuer, B.; Osterburg, B.; Fuß, R. (2024): Calculations of gaseous and particulate emissions from German agriculture 1990 2022. Report on methods and data (RMD) Submission 2024. Braunschweig, Germany, https://git-dmz.thuenen.de/vos/emissionsagriculture2024/-/wikis/home, access 04.06.2024

Anhang

Erläuterungen zu den Treibhausgasquellen im Pflanzenbau

Zu P_F1: Für die Berechnung der N₂O-Emissionen aus NH₃-Verlusten bei der Düngung mit Wirtschaftsdüngern sind zunächst die NH₃-Verluste zu bestimmen. Die hierfür erforderlichen Ammoniakemissionsfaktoren werden im BEK dem deutschen landwirtschaftlichen Emissionsinventar (Vos et al. 2024) entnommen. Die Bezugsgröße für die Emissionsfaktoren ist der TAN-Gehalt des eingesetzten Wirtschaftsdüngers. Liegt der TAN-Gehalt nicht in Form einer Laboranalyse oder eines bundeslandspezifischen Richtwertes vor, ist in Anlehnung an die DüV (2021) das Mineraldüngeräquivalent zu verwenden.

Zu P_F2: Die Ammoniakemissionsfaktoren für die Anwendung von Mineraldüngern werden in der Parameterdatei auf Grundlage der in EEA (2019) angegebenen Formeln für eine durchschnittliche Frühjahrstemperatur von 9 °C gerechnet und gerundet. Dies ergibt 0,128 kg NH₃–N/kg N für Harnstoff, 0,081 kg NH₃–N/kg N für AHL, 0,007 kg NH₃–N/kg N für KAS sowie 0,041 kg NH₃–N/kg N für übrige stickstoffhaltige Mineraldünger. Für Harnstoff sind in der Parameterdatei zusätzlich Emissionsfaktoren aufgeführt, die den Einsatz eines Ureaseinhibitors und eine sofortige Einarbeitung berücksichtigen.

Zu P_F3 und P_F4 : Die bodenbürtigen direkten $N_2O-N-Emissionen$ (E $M_{N_2O-N,direkt}$) in kg $N_2O-N/(ha \cdot a)$ werden berechnet, indem die Summe der ausgebrachten Stickstoffmenge (Wirtschaftsdünger, Komposte und Mineraldünger) in kg $N/(ha \cdot a)$ ohne Abzug von ausbringungsbedingten $NH_3-N-Verlusten$ mit dem Emissionsfaktor $EF_{N_2O-N,direkt}=0.0059$ kg N_2O-N/kg N bei mineralischen Böden bzw. 0.0101 kg N_2O-N/kg N bei organischen Böden multipliziert wird. Diese Emissionsfaktoren beruhen auf der Literaturstudie von Mathivanan et al. (2021) und wurden zum Zweck der vereinfachten Nutzung im BEK auf zwei Faktoren für Deutschland reduziert. Diese Faktoren wurden aufgrund von neuen wissenschaftlichen Erkenntnissen aktualisiert und unterscheiden sich zu den bis einschließlich zur 2. Ausgabe verwendeten Faktoren. Bereits erstellte Bilanzen sind deshalb mit diesen aktualisierten Faktoren neu zu berechnen.

$$EM_{N2O-N,direkt} = N_{D\ddot{u}nger} \cdot EF_{N2O-N,direkt}$$
 (GI. 1)

Die direkten N_2O -Emissionen aus der Ausbringung von Wirtschaftsdüngern werden gemäß ihrem Gehalt an düngewirksamen Stickstoff (Mindestwirksamkeit im Jahr des Ausbringens und im Folgejahr) nach Anlage 3 und § 4 Absatz 1 Satz 2 Nummer 5 der DüV (2021) dem Pflanzenbau angelastet. Der Tierhaltung bzw. der Biogaserzeugung werden die restlichen direkten N_2O -Emissionen aus nicht mineraldüngerwirksamem Stickstoff zugewiesen (siehe TW6 und BG_A9).

Der EF zuzüglich des EF für indirekte N_2O -Emissionen durch Auswaschung (0,00264 kg N_2O -N/kg N, siehe IPCC 2019, Table 11.3), in der Summe also 0,00854 kg N_2O -N/kg N für Mineralböden und 0,01274 kg N_2O -N/kg N für organische Böden, wird einheitlich für jede Art von mineraldüngerwirksamem Stickstoff in den Emissionsquellen P_F3 , 4, 5, und 6 angewendet. Dieser Ansatz ist konform zur Vorgehensweise in der nationalen Klimaberichterstattung nach IPCC (2006), hat aber zur Folge, dass sich die eingesetzte Technologie bei der Wirtschaftsdüngerausbringung mit den damit verbundenen spezifischen NH_3 -Verlusten nicht auf die Stickstoffbasis für die Berechnung der N_2O -Emissionen auswirkt.

Zu P_F5: Die erforderlichen Parameter zur Berechnung der Ernte- und Wurzelrückstände (EWR) finden sich in der Parameterdatei. Auch die Ernte- und Wurzelrückstände gehen als N-Menge bei der Berechnung der bodenbürtigen N₂O-N-Emissionen ein. EWR fallen bei mehrjährigen Kulturen in wesentlichem Umfang nur beim Umbruch der Kultur an, wobei die Anbaudauer in Jahren berücksichtigt wird. Bei mehreren Ernten pro Jahr (z. B. bei Dauergrünland) ist die Anzahl der Ernten ebenfalls zu berücksichtigen. In den Angaben zu den Wurzelrückständen nach IPCC-Tabelle 11.17 (2006) sind Stoppeln nicht berücksichtigt. Die Stickstoffmenge in den Stoppeln wird jedoch als vernachlässigbar angesehen. N₂O-Emissionen aus Nebenernteprodukten fallen nur an, wenn diese auf dem Feld verbleiben. Das führt bei einer Abfuhr der Nebenernteprodukte zu geringeren N₂O-Emissionen als beim Verbleib auf der Fläche.

Zu P_F9 und P_F10: Grundlage für die Ermittlung der anbaubedingten Humus-C-Veränderungen bildet der VDLUFA-Standpunkt (VDLUFA 2014). Der Anbau von humuszehrenden Kulturen, der zu einem Humusabbau führt, setzt im Verhältnis 11: 1 Kohlenstoff und Stickstoff aus dem Humus frei, wie aus Daten von Gensior (2020) hervorgeht. Diese Freisetzung führt zu Kohlenstoffdioxidemissionen (P_F9) und Lachgasemissionen (P_F10). Hierbei wird der Emissionsfaktor nach IPCC (2006, Table 11.1) verwendet (0,01 kg N₂0-N/kg N). Diese Treibhausgasemissionen werden denjenigen Kulturen angerechnet, während deren Anbau sie auftreten.

Der Anbau von Kulturen, die zu einem Humusaufbau führen, bindet Kohlenstoff in Höhe der in VDLUFA (2014) angegebenen Humusreproduktionsleistungen der angebauten Kultur. Diese Kohlenstoffbindung im Humus führt zu einer Treibhausgasgutschrift für die jeweilige Kultur. Zugleich bindet der Humusaufbau Stickstoff im Verhältnis 1:11 zu Kohlenstoff. Sofern organisch gebundener Stickstoff für den Humusaufbau genutzt wird, unterliegt er nach der im BEK vorgeschlagenen Methode keinen unmittelbaren emissionswirksamen Umwandlungsprozessen und Verlusten. Die Stickstoffbindung für den Humusaufbau wird nicht bewertet.

Die Ermittlung der anbaubedingten Humus-C-Veränderungen nach dem VDLUFA-Standpunkt stellen im Rahmen der Klimagasbilanzierung ein vereinfachtes Verfahren dar. Die Ergebnisse sind somit unter Berücksichtigung der mit dem Verfahren verbundenen Einschränkungen zu interpretieren. Sollte der Anwender genauere Bilanzierungsansätze für die Humus-C-Veränderungen nutzen können, sind diese zu bevorzugen. Für eine bessere Transparenz müssen die anbaubedingten Humus-C-Veränderungen getrennt ausgewiesen werden.

Zu P_F11 und P_F12: Zusätzlich zu den kulturartspezifischen Humusvorratsänderungen sind die Humusvorratsänderungen aufgrund von Landnutzungsänderungen von Ackerland in Grünland und umgekehrt zu berücksichtigen.

Die Änderung von Grünland in Ackerland führt zum Humusabbau und damit zur Freisetzung von Kohlenstoff und Stickstoff über einen langen Zeitraum. Diese Landnutzungsänderung (Grünland zu Ackerland) setzt im Verhältnis 11 : 1 Kohlenstoff und Stickstoff aus dem Humus frei, wie aus Daten von Gensior (2020) hervorgeht. Dies führt nach Gensior (2020) zu einer jährlichen Abnahme des Kohlenstoffvorrates im Boden von 1,41 t Humus-C/(ha · a), während zugleich durch den Humusabbau Stickstoff freigesetzt wird (128 kg N/(ha · a)). Dies führt zu Kohlenstoffdioxidemissionen (P_F11) und Lachgasemissionen (P_F12). Diese Emissionen werden über einen Zeitraum von 20 Jahren jährlich denjenigen Kulturen angerechnet, die auf dieser Fläche angebaut werden.

Umgekehrt führt die Umwandlung von Ackerland in Grünland zu einem Humusaufbau. Bei diesem Prozess wird atmosphärisches Kohlenstoffdioxid über die Zufuhr von organischen Materialien im Humus

gebunden. Zugleich bindet dieser Humusaufbau Stickstoff im Verhältnis 1 : 11 zu Kohlenstoff. Diese Stickstoffbindung für den Humusaufbau wird nicht bewertet.

Bei der Landnutzungsänderung von Ackerland zu Grünland werden in Abhängigkeit vom Alter des Grünlands und des Ertragsniveaus die in Tabelle 16 aufgelisteten Humus-C-Vorratsänderungen angerechnet.

Tab. 16: Humus-C-Vorratsänderung bei Landnutzungsänderung (Umwandlung von Ackerland zu Grünland in kg Humus-C/(ha \cdot a))

Alter des Grünlands	Ertragsniveau < 10 t TM	Ertragsniveau > 10 t TM
Alter des Gramanas	Vorratsveränderung i	n kg Humus-C/(ha · a)
1–5 Jahre ¹⁾	600	800
6–10 Jahre	550	700
11–20 Jahre	500	600
21–30 Jahre	400	500
> 30 Jahre	200	250

¹⁾ Die Humus-C-Vorratsänderung in den Jahren 1–5 orientiert sich an der Humusreproduktionsleistung von Ackergras, Klee-Gras im VDLUFA-Standpunkt (VDLUFA 2014).

Zu P_F13 : Die Treibhausgasemissionen aus Humusabbau durch Bewirtschaftung von organischen Böden (P_F13) werden nach den in der Parameterdatei angegebenen Emissionsfaktoren berechnet. Diese Emissionsfaktoren werden differenziert nach der Landnutzung angegeben, getrennt nach Acker- und Grünland (Tiemeyer et al. 2020). Die Emissionsfaktoren enthalten bereits sämtliche Feldemissionen. Für organische Böden (P_F13) sind die Emissionsfaktoren um die durchschnittlichen Emissionen aus P_F1 bis P_F12 zu korrigieren, um Doppelzählungen zu vermeiden.

Zu P_B1 und P_B2 : Falls Kalk oder Grundnährstoffe (P_2O_5 , K_2O) als Vorratsdüngung für mehrere Kulturen ausgebracht werden, sind die dadurch verursachten Emissionen über die Fruchtfolge zu verteilen. In der Parameterdatei wird für Kalkammonsalpeter – wie auch für alle anderen nicht harnstoffhaltigen Stickstoff-Einnährstoffdünger – der Treibhausgasemissionsfaktor für Kalkammonsalpeter nach Fertilizers Europe (2024) angenommen (bezogen auf kg N), da Kalkammonsalpeter der mit Abstand meist verwendete nicht harnstoffhaltige Stickstoff-Einnährstoffdünger ist. Zur Bewertung der Nährstofflieferungen aus Wirtschaftsdüngern siehe Erläuterungen zu T_N1 .

Zu P_B6: Hier werden die Emissionen aus der Bereitstellung des Energieträgers (z. B. Dieselherstellung) und der Konversion (Verbrennung des Diesels) zusammengefasst.

Zu P_B7: Treibhausgasemissionen aus der Herstellung landwirtschaftlicher Maschinen sind in den meisten landwirtschaftlichen Arbeitsverfahren von untergeordneter Bedeutung. Treibhausgasemissionsfaktoren für Maschinen beziehen sich in den meisten Ökobilanz-Datenbanken zudem auf das Gewicht der Maschine, was in einfachen THG-Bilanzierungsansätzen zu unverhältnismäßig hohen Aufwänden in der Datenerhebung führt, da für die Berechnung der THG-Emissionen aus der Maschinenherstellung die gewichtsbezogenen Emissionsfaktoren, das Gewicht der Maschinen und der Nutzungsumfang in einem bestimmten Verfahren benötigt werden. Daher verweist in der Datenbank der Treibhausgasemissionsfaktor

für die Maschinenherstellung auf den verbrauchten Dieselkraftstoff. Abgeleitet ist dieser Wert aus den Ergebnissen des Netzwerks ökologischer und konventioneller Pilotbetriebe (Becker et al. 2018, Hülsbergen et al. 2022) und Ecoinvent (2019).

Zu P_B8: Werkstoffe werden in der Landwirtschaft für verschiedene Betriebsmittel benötigt. Pappe und Glas werden für Verpackungen eingesetzt, Stahl kann z. B. für Befestigungsstrukturen im Weinbau verwendet werden. Insbesondere für Kunststoffe gibt es ein breites Anwendungsspektrum (Tab. 17).

Tab. 17: Beispielhafte Einsatzbereiche von Kunststoffen in der Landwirtschaft

Vanuanduna	Kunststoffart				
Verwendung	Polyethylen	Polypropylen	Polyvinylchlorid		
Landwirtschaft	Silofolie	Ballenschnur	Bewässerungsrohre (starr)		
	Ballennetze	Big Bags			
Gartenbau	Schutznetze (Obst und Gemüse)	Gartenvlies	Bewässerungsrohre (starr)		
	Hemdchen-Tragetaschen				
	Bewässerungsschläuche (flexibel)				

Der Einsatz der Werkstoffe wird in der Klimabilanz über die verwendete Masse und den Treibhausgasemissionsfaktor der jeweiligen Werkstoffbereitstellung bewertet. Die Treibhausgasemissionsfaktoren der einzelnen Werkstoffe sind in der Parameterdatei aufgeführt und beziehen sich auf die Bereitstellung des Werkstoffs. Bei Pappe, Stahl und den Kunststoffen sind die Emissionen aus der Verarbeitung des Werkstoffs zum jeweiligen Produkt nicht inbegriffen. Eine Vernachlässigung dieser Emissionen sind im Rahmen der betrieblichen Klimabilanz aufgrund der geringen Relevanz allerdings gerechtfertigt.

Eine mehrjährige Nutzung der Kunststoffe und von Stahl ist mit einer linearen Abschreibung der Treibhausgasemissionen über die Nutzungsdauer zu berücksichtigen. Bei Bewässerungsschläuchen im Weinbau kann beispielsweise von einer durchschnittlichen Nutzungsdauer von 20 Jahren ausgegangen werden.

Erläuterungen zu den Treibhausgasquellen in der Tierhaltung

Zu T_V1 bis T_W8 : T_V1 ist die Methanemission aus enterischer Fermentation ($EF_{CH4,ent}$) in kg $CH_4/(TP \cdot a)$, wobei TP für Tierplatz steht. Für T_W1 bis T_W6 (NH_3 - und N_20 -Emissionen) wird die N-Ausscheidung (N_{Exkr}) in kg $N/(TP \cdot a)$ benötigt. Im Zusammenhang mit den NH_3 -Emissionen ist zusätzlich die Kenntnis des relativen TAN-Anteils ($x_{TAN,Exkr}$) der N-Ausscheidungen erforderlich (in kg TAN/kg N-Ausscheidung). T_W7 und T_W8 sind die Methanemissionen aus der Wirtschaftsdüngerlagerung und auf der Weide; ihre Berechnung erfordert eine Angabe zur Ausscheidung organischer Trockenmasse (oTM_{Exkr}) in kg $oTM/(TP \cdot a)$.

Die Größen E_{FCH4,ent}, N_{Exkr}, x_{TAN,Exkr} und oTM_{Exkr} sind somit unverzichtbare Eingangsgrößen für die Berechnung der Treibhausgasemissionen aus der Tierhaltung nach dem BEK. Dies stellt eine gewisse Herausforderung für den BEK-Nutzer dar, denn in aller Regel sind nur die N-Ausscheidungen relativ einfach zu ermitteln. Dies kann z. B. nach Vorgaben der DüV (2021) und anhand von DLG-Publikationen (z. B. DLG 2014) oder nach den Regelwerken der Emissionsberichterstattung (IPCC 2006, EEA 2019) geschehen. Dabei handelt es sich aber zum Teil um fixe Standardwerte, mit deren Hilfe man eine Abhängigkeit der N-Ausscheidung von der tierischen Leistung (z. B. der Milchleistung bei Milchkühen) gar nicht oder nur begrenzt abbilden kann. Überdies können solche Daten die emissionsmindernde Weiterentwicklung von Fütterungsstrategien zur Reduzierung der N-Ausscheidungen (DLG 2020) in aller Regel nicht berücksichtigen.

Idealerweise verfügt der BEK-Nutzer über einen für die jeweilige Aufgabenstellung geeigneten N-Ausscheidungswert aus aktueller Quelle, z.B. aus dem betrieblichen Nährstoffvergleich. Wenn dies nicht der Fall ist, können für eine Reihe von Tierkategorien Standardwerte aus der BEK-Parameterdatei entnommen werden. Für die Produktionsverfahren Milchkuhhaltung, Rindermast, Sauenhaltung, Ferkelaufzucht sowie Schweinemast sollte die N-Ausscheidung dagegen leistungsabhängig ermittelt werden.

Für Milchkühe ist dies nach DLG (2014, S. 107 f.) z. B. über Milchleistung sowie Harnstoff- und N-Gehalt der Milch möglich. Dabei ist die tägliche N-Ausscheidung je Tierplatz während der Laktationsphase wie folgt gegeben:

$$N_{Exkr, Mikh}\left(\frac{g\,N}{d}\right) = 124 + 1.320 \cdot N_{Milchharnstoff}\left(\frac{g\,N}{kg\,Milch}\right) + 1,87 \cdot N_{Milch}\left(\frac{g\,N}{d}\right) - 6,90 \cdot Milchmenge\left(\frac{kg}{d}\right)$$
(Gl. 2)

Die tägliche N-Ausscheidung während der Trockenstehphase (unterstellte Dauer: 45 Tage) wird von DLG (2014, S. 108) mit 256 g N je TP für Grünlandbetriebe und 218 g N je TP für Ackerfutterbaubetriebe berechnet.

Darüber hinaus gab die DLG (2014, S. 34 f.) N-Ausscheidungen auf Basis von milchleistungsabhängigen Rationsvorschlägen an. In den Jahren danach wurden die Milchkuh-Fütterungsstrategien weiterentwickelt, um eine Verringerung u. a. der N-Ausscheidungen zu erreichen (DLG 2020).

Für eine schnelle und unkomplizierte Berechnung der N-Ausscheidung in Abhängigkeit von der Milchleistung bietet sich eine Gleichung an, die für den BEK aus dem Rechenmodell GAS-EM der Emissionsberichterstattung 2021 (Rösemann et al. 2021) abgeleitet wurde. Diese Gleichung (auf die weiter unten noch näher eingegangen wird, siehe Gleichung 3) basiert auf den Rationsangaben der DLG (2014, S. 34 f.) und berücksichtigt deshalb nicht den Fortschritt bei den Milchkuh-Fütterungsstrategien nach DLG-Merkblatt 444 (DLG 2020). Ein Vorteil dieser Gleichung ist aber, dass sie nur eine einzige Eingabegröße benötigt, nämlich die Milchleistung. Diese Einfachheit wurde dadurch erreicht, dass verschiedene andere mögliche

Eingangsgrößen konstant gehalten wurden, indem sie die mittleren Verhältnisse in Deutschland im Jahr 2019 abbilden.

Analog dazu wurden mithilfe des o. g. GAS-EM-Modells auch Gleichungen für die CH₄-Emission aus der Verdauung (EF_{CH4,ent}), den TAN-Gehalt der N-Ausscheidungen (x_{TAN,Exkr}) und die Ausscheidung organischer Trockenmasse (oTM_{Exkr}) in der Milchkuhhaltung abgeleitet (Gleichungen 3, 5 und 6). Dieser Gleichungssatz besitzt gegenüber gängigen landwirtschaftlichen Publikationen wie DLG (2014), die zu EF_{CH4,ent}, x_{TAN} und oTM_{Exkr} keine Angaben machen, den Vorteil, alle für BEK benötigten Eingangsgrößen in konsistenter Weise bereitzustellen.

Die vorstehend für Milchkühe beschriebene Problematik und die möglichen Lösungsansätze existieren prinzipiell auch für die Produktionszweige Rindermast, Sauenhaltung, Ferkelaufzucht sowie Schweinemast. Vor allem in der Schweinemast wäre es wünschenswert, die N-reduzierenden Fortschritte in der Fütterung besser zu berücksichtigen, als das mit zum Teil veralteten Standardwerten oder den Berechnungen mit dem GAS-EM-Modell der Emissionsberichterstattung 2021 (Rösemann et al. 2021) möglich ist. Das GAS-EM-Modell bietet derzeit aber die wahrscheinlich einzige Möglichkeit, die BEK-Eingangsgrößen EF_{CH4-ent}, N_{Exkr}, x_{TAN,Exkr} und oTM_{Exkr} in konsistenter Weise zu ermitteln.

Ausblick: 2020/21 führt das Statistische Bundesamt zum zweiten Mal nach 2010/2011 eine Erhebung zum Proteineinsatz in der Schweinemast durch, deren Ergebnisse in künftige Emissionsberichterstattungen eingehen sollen und damit auch die Möglichkeit für eine Aktualisierung der aus GAS-EM-Ergebnissen abgeleiteten Gleichungen bieten werden.

Im Folgenden werden die mithilfe von GAS-EM abgeleiteten Gleichungen getrennt nach Produktionszweigen beschrieben. Für die übrigen Tierkategorien wird neben N_{Exkr} auch für $EF_{CH4:ent}$, $x_{TAN:Exkr}$ und o TM_{Exkr} auf die Standardwerte in der Parameterdatei verwiesen.

Im Anschluss an die nachfolgenden Gleichungen wird erläutert, wie im BEK die direkten und indirekten N_2 O-Emissionen aus N-Ausscheidungen auf der Weide zwischen der Tierhaltung und dem Pflanzenbau aufgeteilt werden.

Milchkuhhaltung

Die Funktionen für die Methanemissionen aus enterischer Fermentation (Gl. 3), die N-Ausscheidung (Gl. 4), den relativen TAN-Gehalt der N-Ausscheidungen (Gl. 5) sowie die oTM-Ausscheidung (Gl. 6) beruhen auf dem GAS-EM-Milchkuh-Modell. Für das Tiergewicht wurden 650 kg zugrunde gelegt. In der Fütterung wurde die über Deutschland gemittelte Populationsverteilung des Jahres 2019 (28,6 % in Grünlandbetrieben, 71,4 % in Ackerfutterbaubetrieben) sowie das deutsche Populationsmittel der jährlichen Weidedauer 2019 (10,7 % des Jahres) berücksichtigt. Eingangsgröße für die nachstehenden Funktionen ist die Milchleistung (ML) in kg ECM/(TP·a).

$$EF_{CH4 ent, Mikh} = -2,1551 \cdot 10^{-7} \cdot ML^2 + 1,0711 \cdot 10^{-2} \cdot ML + 63,167$$
 (Gl. 3)

$$N_{ExkrMikh} = 1,8904 \cdot 10^{-7} \cdot ML^2 + 5,8743 \cdot 10^{-3} \cdot ML + 56,475$$
 (Gl. 4)

$$x_{\text{TAN.Exkr,Mikh}} = 1,4088 \cdot 10^{-9} \cdot \text{ML}^2 - 4,3830 \cdot 10^{-5} \cdot \text{ML} + 0,74556$$
 (GI. 5)

$$oTM_{Exkr,Mikh} = -3,4799 \cdot 10^{-6} \cdot ML^2 + 0,14597 \cdot ML + 486,28$$
 (Gl. 6)

Rindermast

Die Grundlage der Funktionen für die Methanemissionen aus enterischer Fermentation (Gl. 7), die N-Ausscheidung (Gl. 8), den relativen TAN-Gehalt der N-Ausscheidungen (Gl. 9) sowie die oTM-Ausscheidung (Gl. 10) ist das GAS-EM-Mastbullen-Modell (Anfangsgewicht 125 kg). Eingangsgrößen sind die mittlere tägliche Lebendmassezunahme (dLM) in g/d und das Endgewicht (EG) in kg.

$$\mathsf{EF}_{\mathsf{CH4},\mathsf{ent},\mathsf{Rmst}} = -(6,4326 \cdot 10^{-8} \cdot \mathsf{dLM} + 1,5783 \cdot 10^{-5}) \cdot \mathsf{EG}^2 + (1,1765 \cdot 10^{-4} \cdot \mathsf{dLM} + 2,9056 \cdot 10^{-2}) \cdot \mathsf{EG} - 2,9607 \cdot 10^{-2} \cdot \mathsf{dLM} + 20,808$$

$$N_{\text{Exkr,Rmst}} = -(6,5572 \cdot 10^{-8} \cdot \text{dLM} + 1,6089 \cdot 10^{-5}) \cdot \text{EG}^2 + (1,1628 \cdot 10^{-4} \cdot \text{dLM} + 2,5944 \cdot 10^{-2}) \cdot \text{EG} - 3,8764 \cdot 10^{-2} \cdot \text{dLM} + 21,889$$
(GI. 8)

$$x_{\text{TAN,Exkr,Rmst}} = -(3,2508 \cdot 10^{-10} \cdot \text{dLM} - 1,2810 \cdot 10^{-7}) \cdot \text{EG}^2 + (5,1472 \cdot 10^{-7} \cdot \text{dLM} - 2,2092 \cdot 10^{-4}) \cdot \text{EG} - 2,4933 \cdot 10^{-4} \cdot \text{dLM} + 0,78247$$
 (GI. 9)

oTM_{Exkr,Rmst} =
$$-(6,3450 \cdot 10^{-7} \cdot dLM + 1,5567 \cdot 10^{-4}) \cdot EG^2 + (1,1718 \cdot 10^{-3} \cdot dLM + 0,2981) \cdot EG - 0,29622 \cdot dLM + 203,14$$
 (GI. 10)

Sauenhaltung

Die Funktionen für die Methanemissionen aus enterischer Fermentation (Gl. 11), die N-Ausscheidung (Gl. 12), den relativen TAN-Gehalt der N-Ausscheidungen (Gl. 13) sowie die oTM-Ausscheidung (Gl. 14) wurden aus dem GAS-EM-Sauen-Modell abgeleitet (Sauen-Lebendmasse 220 kg, Saugferkel mit Geburts-Lebendmasse 1,5 kg und Absetz-Lebendmasse 8 kg). Eingangsgröße ist die Anzahl der je Jahr und Sauen-TP aufgezogenen Saugferkel (SF).

$$EF_{CH4,ent,Sh} = 3,0504 \cdot 10^{-2} \cdot SF + 2,0874$$
 (Gl. 11)

$$N_{ExkrSh} = 0.19862 \cdot SF + 22.9$$
 (Gl. 12)

$$x_{TAN,Exkr,Sh} = -7,9682 \cdot 10^{-4} \cdot SF + 0,77127$$
 (Gl. 13)

$$oTM_{Exkr,Sh} = 1,9168 \cdot SF + 170,94$$
 (Gl. 14)

Ferkelaufzucht

Die Grundlage der Funktionen für die Methanemissionen aus enterischer Fermentation (Gl. 15), die N-Ausscheidung (Gl. 16), den relativen TAN-Gehalt der N-Ausscheidungen (Gl. 17) sowie die oTM-Ausscheidung (Gl. 18) ist das GAS-EM-Aufzuchtferkel-Modell. Es wird ein Leerstand von 7 Tagen zwischen den Durchgängen (KTBL 2020, S. 637) unterstellt. Eingangsgröße ist die jährliche Lebendmassezunahme (aLM) in kg/ (TP·a).

$$EF_{CH4,ent,Frkzt} = 3,2330 \cdot 10^{-6} \cdot aLM^2 + 5,4433 \cdot 10^{-4} \cdot aLM + 0,19263$$
 (Gl. 15)

$$N_{Exkr} = 4,8629 \cdot 10^{-5} \cdot aLM^2 - 8,3527 \cdot 10^{-3} \cdot aLM + 3,3662$$
 (Gl. 16)

$$x_{TAN,Exkr,Frkzt} = 4,2060 \cdot 10^{-6} \cdot aLM^2 - 2,236 \cdot 10^{-3} \cdot aLM + 0,9093$$
 (Gl. 17)

$$oTM_{Exkr,Frkzt} = 2,7510 \cdot 10^{-4} \cdot aLM^2 + 4,3913 \cdot 10^{-2} \cdot aLM + 16,06$$
 (Gl. 18)

Schweinemast

Die Funktionen für die Methanemissionen aus enterischer Fermentation (Gl. 19), die N-Ausscheidung (Gl. 20), den relativen TAN-Gehalt der N-Ausscheidungen (Gl. 21) sowie die oTM-Ausscheidung (Gl. 22) beruhen auf dem GAS-EM-Mastschweine-Modell. Es wurden ein Einstallungsgewicht von 28 kg und ein Endgewicht von 118 kg und somit ein Zuwachs (Z) von 90 kg je Tier (DLG 2014, S. 73–76) unterstellt. Eingangsgrößen der nachfolgenden Funktionen sind die jährliche Lebendmassezunahme (aLM) in kg/($TP \cdot a$) sowie die mittlere tägliche Lebendmassezunahme (dLM) in g. Die Anzahl der Mastdurchgänge entspricht dem Quotienten aLM : Z.

$$\mathsf{EF}_{\mathsf{CH4},\mathsf{ent},\mathsf{Schwmst}} = (2,2774\cdot 10^{-9}\cdot \mathsf{dLM}^2 - 5,5797\cdot 10^{-6}\cdot \mathsf{dLM} + 6,8624\cdot 10^{-3})\cdot \mathsf{aLM} \tag{Gl. 19}$$

$$N_{Exkr,Schwmst} = (4,2901 \cdot 10^{-8} \cdot dLM^2 - 1,0511 \cdot 10^{-4} \cdot dLM + 0,10378) \cdot aLM$$
 (Gl. 20)

$$x_{TAN.Exkr.Schwmst} = 3,5043 \cdot 10^{-8} \cdot dLM^2 - 1,2880 \cdot 10^{-4} \cdot dLM + 0,8078$$
 (Gl. 21)

$$oTM_{Exkr,Schwmst} = (2,3989 \cdot 10^{-7} \cdot dLM^2 - 5,8772 \cdot 10^{-4} \cdot dLM + 0,72217) \cdot aLM \tag{Gl. 22}$$

Aufteilung der N₂O-Emissionen aus Weidegang auf Tierhaltung und Pflanzenbau

Die direkten und indirekten N_2O -Emissionen aus N-Ausscheidungen auf der Weide werden zwischen der Tierhaltung und dem Pflanzenbau aufgeteilt. Analog zu der Aufteilung bei den N_2O -Emissionen aus der N-Wirtschaftsdüngerausbringung erfolgt die Aufteilung des ausgeschiedenen Stickstoffs über die Mineraldüngerwirksamkeit im Jahr der Ausscheidung und im Folgejahr. Für den mineraldüngerwirksamen N-Anteil werden die N_2O -Emissionen dem Pflanzenbau zugeordnet und die N_2O -Emissionen aus dem nicht mineraldüngerwirksamen N-Anteil werden der Tierhaltung zugeordnet. Der darauf anzuwendende EF setzt sich zusammen aus dem EF für direkte $(0,02\ kg\ N_2O-N/kg\ N)$ plus indirekte N_2O -Emissionen aus der Nitratauswaschung $(0,00264\ kg\ N_2O-N/kg\ N)$, also insgesamt $0,02264\ kg\ N_2O-N/kg\ N$.

Zu T_B2: Der Treibhausgasemissionsfaktor für Soja-Importmix nach Deutschland als Futtermittel ergibt sich aus den Emissionsfaktoren nach ecoinvent (Ecoinvent 2019) für den Sojaanbau in Nord- und Südamerika, wo die Hauptimportländer liegen und den jeweiligen Importanteilen aus der Statistik für Sojaimporte nach Deutschland (FAO 2022). Als weitere Emissionsquellen werden Landnutzungsänderungen und der Transport nach Deutschland berücksichtigt. Hieraus ergibt sich in Summe ein Treibhausgasemissionsfaktor von 1,54 kg CO₂e/kg FM Soja (Importmix Deutschland). Bei einem zertifizierten Produkt, für das keine Landnutzungsänderung nachgewiesen ist, ist ein Treibhausgasemissionsfaktor von 0,49 kg CO₂e/kg FM Soja anzusetzen.

Die Sojakomponente von Kraftfutter wird wie Soja als Futtermittel bewertet. Für die übrigen Komponenten von Kraftfutter wird ein von der AG BEK abgestimmter Konventionswert von 0,65 kg $\rm CO_2e/kg~TM$ angenommen. Dieser Konventionswert ist unter Anwendung des BEK für Getreideanbau berechnet worden. Auch die $\rm CO_2e-Emissionen$ aus der Grundfuttermittelproduktion müssen zur Wahrung der Konsistenz der Berechnungen nach der BEK-Methodik ermittelt werden. Als Konventionswert werden 0,47 kg $\rm CO_2e/TM$ Grundfuttermittel vorgeschlagen.

Zu T_B4: Der Treibhausgasemissionsfaktor für Mineralfutter wird auf Grundlage der mittleren Zusammensetzung berechnet. Hierzu werden die Hauptkomponenten Dicalciumphosphat und Natriumchlorid mit ihren spezifischen Treibhausgasemissionsfaktoren berücksichtigt. Mineralfutter setzt sich nach Cederberg et al. (2009) aus 40 % Dicalciumphosphat und 45 % Natriumchlorid zusammen. Da die ecoinvent-Datenbank keinen Treibhausgasemissionsfaktor für Dicalciumphosphat bereitstellt, wird der Emissionsfaktor für Natriumphosphat verwendet. Für die 15 % übrigen Bestandteile wird ein Emissionsfaktor verwendet, der sich aus dem Verhältnis der Hauptbestandteile ergibt. Auf dem daraus errechneten Wert werden 10 % für Transport und Vertrieb aufgeschlagen.

Zu T_B8: Siehe obige Erläuterungen zu "P_B7".

Erläuterungen zu den Treibhausgasquellen bei der Energiegewinnung aus Biogas

Zu BG_A1: CH₄-Emissionen aus der Wirtschaftsdüngervorlagerung sind abhängig von der Lagerdauer. Im BEK wird der Emissionsfaktor für eine Lagerdauer von ein bis zwei Wochen abgeschätzt und als Rechengrundlage empfohlen.

Zu BG_A7: Bei dem Emissionsfaktor für die NH₃-Emissionen aus dem offenen Gärrestlager, der in der Parameterdatei zu finden ist, wird davon ausgegangen, dass im Gärrestlager von Biogasanlagen eine natürliche Schwimmdecke vorhanden ist.

Zu BG_B1: Siehe obige Erläuterungen zu "P_B7".

Zu BG_B2: Bei der Biogaserzeugung werden im Gegensatz zur Tier- und Pflanzenproduktion zusätzlich die Treibhausgasemissionen aus der Herstellung der Biogasanlage berücksichtigt, um eine Vergleichbarkeit mit der Stromerzeugung aus Windkraft- und Photovoltaikanlagen herzustellen. (Bei Windkraft- und Photovoltaikanlagen werden im Gegensatz zur Strombereitstellung aus Biogas die Treibhausgasemissionen allerdings fast ausschließlich durch bauliche Anlagen und Anlagentechnik verursacht.) Im Pflanzenbau und

in der Tierhaltung werden Treibhausgasemissionen aus der Erstellung landwirtschaftlicher Gebäude und baulicher Anlagen nicht berücksichtigt, da sie in den meisten landwirtschaftlichen Produktionssystemen nur einen sehr geringen Anteil an den Treibhausgasemissionen ausmachen und aufgrund der langen Nutzungsdauer kein kurz- und mittelfristig mobilisierbares Potenzial zur Minderung der Treibhausgasemissionen aufweisen. Literaturwerte für die spezifischen Treibhausgasemissionen aus baulichen Anlagen und Anlagentechnik von Biogasanlagen variieren von 0,0019 bis 0,042 kg CO₂e/kWh Biogasstrom (Tab. 18). Hieraus wird für den BEK ein Konventionswert von 0,015 kg CO₂e/kWh Biogasstrom abgeleitet.

Tab. 18: Literaturübersicht zu Treibhausgasemissionen aus baulichen Anlagen und Anlagentechnik von Biogasanlagen (KTBL 2010)

Autor	Wert	Installierte elekt- rische Leistung kW	Nutzungsdauer	Wichtigste Baustoffe	Baustoff- bedarf
	kg CO ₂ e/kWh	KVV	a		t/a
Bachmaier (2013)	0,0029	76-855	20 5 (Rührtechnik), 7 (BHKW)	Beton Stahl	10–100 1–6
Geldermann et al. (2012)	0,0080-0,0180	500-600	20 10 (Rührwerke, Tragluftgebläse, Moto- ren, Generatoren)	Beton/ Stahlbeton Stahl (ohne Baustahl)	1–15 0,09–0,30
Hundt (2010)	0,0140	560	20 (alle Anlagenteile)	Beton Stahl (+ Edelstahl)	293 6,5
Meyer-Aurich et al. (2012)	0,0019	500	15 (alle Anlagenteile)	Beton Stahl	208 43
KTBL (2010)	0,0100-0,0700	180-1.400			
Plöchl und Schulz (2006)	0,0420	Annahme: 500	15 (alle Anlagenteile)	Beton Stahl	209 44
Ecoinvent (2019)	0,0156	Annahme: 50	20 (alle Anlagenteile)		

Zu BG_B3: Falls der Strombedarf alternativ aus erneuerbaren Quellen (Photovoltaik, Wind, Wasserkraft und Biodiesel) gedeckt wird, können für die Berechnung die entsprechenden in der Parameterdatei angegebenen Emissionsfaktoren für regenerativen Strom verwendet werden.

Zu BG_B5: Die THG-Emissionen aus der Substratproduktion müssen zur Wahrung der Konsistenz der Berechnungen nach der BEK-Methodik ermittelt werden.

Erläuterungen zu Gutschriften für Nebenprodukte

P_N1: Zur Vermeidung einer Überbewertung der Nebenernteprodukte wird empfohlen, die vorgeschlagenen Werte von VDLUFA (2014) für die Humusreproduktionsleistung der Nebenernteprodukte mit einem 20%igen Sicherheitsabschlag zu versehen. Das Humusaufbaupotenzial durch das Nebenprodukt sollte im Endergebnis der Treibhausgasbilanz transparent dargestellt werden.

 $P_N 2$: Für die düngewirksamen Nährstoffe in den Nebenprodukten Stroh oder Kraut sowie für den Vorfruchtwert (z. B. 10 kg N bei Raps laut DüV) erfolgt die Berechnung der Gutschrift analog zum Wirtschaftsdünger (siehe Erläuterungen zu $T_N 1$).

 T_N1 und BG_N2 : Der Substitutionswert für Wirtschaftsdünger und Gärrest ergibt sich aus den pflanzenverfügbaren Anteilen von P_2O_5 , K_2O und N und dem Treibhausgasemissionsfaktor für die Herstellung von Phosphor-, Kali- und AHL-Dünger. Phosphor und Kalium werden als 100 % pflanzenverfügbar angenommen.

Für Stickstoff, dessen organisch gebundener Anteil erst über längere Zeit verfügbar wird, werden die im Anhang 3 der DüV (2021) veröffentlichten Mineraldüngerwirksamkeiten und die nach § 4 Absatz 1 Satz 2 Nummer 5 im Folgejahr anzurechnenden 10 % der ausgebrachten Stickstoffmenge verwendet. Da für die Berechnung des Ersatzwertes die Verwendung von AHL – als derjenige Stickstoffmineraldünger mit den geringsten spezifischen THG-Emissionen in der Herstellung – angenommen und der Ersatzwert nicht auf den gesamten Stickstoff angewendet wird, bleibt die relative Vorzüglichkeit der Anwendung von Wirtschaftsdünger gegenüber der Anwendung von Mineraldünger gewährleistet.

Zu BG_N1: Es wird davon ausgegangen, dass extern genutzte Wärme aus Biogasanlagen direkt oder indirekt Wärme ersetzt, die aus fossilen Rohstoffen erzeugt wird. Die Erzeugung aus Erdgas wird gewählt, da diese die geringsten Emissionen im Vergleich der fossilen Energieträger verursacht. Nur solche Wärme, die nachweisbar Wärme aus fossilen Energieträgern ersetzt, ist anrechenbar. Dies schließt beispielsweise die Anrechenbarkeit für die Gärrestaufbereitung aus. Für Holztrocknung ist nur der Wert anrechenbar, der der Erhöhung des Brennwertes des getrockneten Gutes entspricht. Die extern genutzte Wärmemenge aus Biogas beinhaltet weder den Eigenwärmebedarf der Biogasanlage noch die Wärmeverluste bei der Wärmelieferung an den Kunden.

Zu BG_N3: Für die Ermittlung des Humuskohlenstoffgehaltes im Gärrest wird aus Expertenschätzungen (VDLUFA 2014) die Anwendung folgender Formel in Abhängigkeit des TM-Gehaltes empfohlen:

```
Humus-C im Gärrest in kg Humus-C/m<sup>3</sup> = a + b \cdot TM (Gl. 23)
```

mit $a = 2 \text{ kg Humus-C/m}^3$ $b = 1 \text{ kg Humus-C/(m}^3 \cdot \%)$ TM = Trockenmassegehalt in % Hierbei wird unterstellt, dass 1 t FM = 1 m³ FM

Das Humusaufbaupotenzial durch den Gärrest muss im Endergebnis der Treibhausgasbilanz separat dargestellt werden.

Abkürzungen

а	Jahr
A (als Index)	Anlage
AHL	Ammonium-Harnstoff-Lösung
aLM	jährliche Lebendmassezunahme
B (als Index)	Betriebsmitteleinsatz
B ₀	maximale Methan-Freisetzungskapazität
BEK	Berechnungsstandard für einzelbetriebliche Klimabilanzen
BG (als Index)	Biogaserzeugung
BHKW	Blockheizkraftwerk
С	Kohlenstoff
CH ₄	Methan
CO ₂ e	Kohlenstoffdioxid-Äquivalent(e)
d	Tag
D	Deutschland
dLM	tägliche Lebendmassezunahme
DüV	Düngeverordnung
E	Ertrag
ECM	Energie- und eiweißkorrigierte Milch
EF	Emissionsfaktor
EG	Endgewicht
EM	Emission (Emissionsmasse)
ent	enterische Fermentation
EWR	Ernte- und Wurzelrückstände
Exkr	Exkremente/Ausscheidungen
F (als Index)	Feld
FM	Frischmasse
Frkzt	Ferkelaufzucht
GAS-EM	Rechenmodell "Gasförmige Emissionen" zur Erstellung des jährlichen Emissionsinventars der deutschen Landwirtschaft
GF	Grundfutter
GWP ₁₀₀	Treibhauspotenzial (engl. global warming potential) über einen Zeitraum von 100 Jahren
HP	Hauptprodukt
IPCC	Intergovernmental Panel on Climate Change
K	Kalium
KAS	Kalkammonsalpeter
KF	Kraftfutter

K ₂ 0	Kaliumoxid
kWh _{el}	Kilowattstunde, elektrisch
kWh _{th}	Kilowattstunde, thermisch
LM	Lebendmasse
MCF	Methan-Umwandlungsfaktor
MDÄ	Mineraldüngeräquivalent
MDW	Mineraldüngerwirksamkeit
ME	Gehalt an umsetzbarer Energie
MF	Mineralfutter
Mikh	Milchkuhhaltung
MJ	Megajoule
ML	Milchleistung
N	Stickstoff
N (als Index)	Nebenprodukte
NEL	Nettoenergielaktation
NH ₃	Ammoniak
N ₂ 0	Lachgas
NP	Nebenernteprodukt
оТМ	organische Trockenmasse
Р	Phosphor
P (als Index)	Pflanzenbau
P ₂ O ₅	Phosphat
RME	Rapsmethylester
Rmst	Rindermast
Schwmst	Schweinemast
SF	Saugferkel
SG	Schlachtgewicht
Sh	Sauenhaltung
T (als Index)	Tierhaltung
TAN	Ammonium-Stickstoff (engl. total ammoniacal nitrogen)
THG	Treibhausgas(e)
TM	Trockenmasse
TP	Tierplatz
V (als Index)	Verdauung (enterische Fermentation)
W (als Index)	Wirtschaftsdünger
WD	Wirtschaftsdünger
WR	Wurzelrückstände

Mitwirkende

Person	Institution	
Dries, Johannes	ehemals: Landwirtschaftskammer Rheinland-Pfalz aktuell: Regierungspräsidium Darmstadt	
Dr. Effenberger, Mathias	Bayerische Landesanstalt für Landwirtschaft	
Fröhlich, Lisa	Landesbetrieb Landwirtschaft Hessen	
Dr. Gödeke, Katja	ehemals: Thüringer Landesamt für Landwirtschaft und Ländlichen Raum aktuell: Bundesministerium für Ernährung und Landwirtschaft	
Grebe, Sven	Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.	
Dr. Haenel, Hans-Dieter	ehemals: Thünen-Institut für Agrarklimaschutz	
Dr. Hansen, Anja	Leibniz-Institut für Agrartechnik und Bioökonomie e.V.	
Dr. Häußermann, Uwe	Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement	
Holz, Philipp	ehemals: Landwirtschaftskammer Rheinland-Pfalz	
Kätsch, Stephanie	ehemals: Thünen-Institut für Ländliche Räume	
Labonte, Caroline	Landwirtschaftskammer Nordrhein-Westfalen	
Lasar, Ansgar †	Landwirtschaftskammer Niedersachsen	
Dr. Nyfeler-Brunner, Aurelia	ehemals: Bodensee-Stiftung aktuell: Amt für Umwelt Kanton Thurgau	
Osterburg, Bernhard	ehemals: Thünen-Institut für Ländliche Räume aktuell: Thünen-Institut, Stabsstelle Klima, Boden, Biodiversität	
Paffrath, Petra	Landwirtschaftskammer Nordrhein-Westfalen	
Dr. Poddey, Eike	ehemals: Thünen-Institut für Agrarklimaschutz aktuell: Bioland e.V.	
Schmehl, Meike	Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.	
Schmid, Harald	TU München, Lehrstuhl für Ökologischen Landbau und Pflanzenbausysteme	
Dr. Schraml, Martine	ehemals: VDLUFA Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten e.V. aktuell: Landwirtschaftliches Technologiezentrum Augustenberg	
Dr. Vos, Cora	Thünen-Institut für Agrarklimaschutz	
Dr. Wulf, Sebastian	Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.	
Zerhusen, Bianca	ehemals: Bayerische Landesanstalt für Landwirtschaft	

Beteiligte Organisationen

Bayerische Landesanstalt für Landwirtschaft Institut für Landtechnik und Tierhaltung Vöttinger Str. 36 85354 Freising

Bodensee-Stiftung Fritz-Reichle-Ring 4 78315 Radolfzell am Bodensee

Justus-Liebig-Universität Gießen I Institut für Landschaftsökologie und Ressourcenmanagement Heinrich-Buff-Ring 26 35392 Gießen

Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. Bartningstr. 49 64289 Darmstadt

Landesbetrieb Landwirtschaft Hessen Kölnische Straße 48–50 34117 Kassel

Landwirtschaftskammer Niedersachsen Mars-la-Tour-Str. 1–13 26121 Oldenburg

Landwirtschaftskammer Nordrhein-Westfalen Nevinghoff 40 48147 Münster

Landwirtschaftskammer Rheinland-Pfalz Burgenlandstraße 7 55543 Bad Kreuznach

Leibniz-Institut für Agrartechnik und Bioökonomie e.V. Max-Eyth-Allee 100 14469 Potsdam

Thünen-Institut für Agrarklimaschutz (AK) und Thünen-Institut für Ländliche Räume (LR) Bundesallee 65 (AK) und 64 (LR) 38116 Braunschweig

Thüringer Landesamt für Landwirtschaft und Ländlichen Raum Naumburger Str. 98 07743 Jena

TU München Lehrstuhl für Ökologischen Landbau und Pflanzenbausysteme Liesel-Beckmann-Str. 2 85354 Freising

VDLUFA – Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten e.V. Obere Langgasse 40 67346 Speyer

KTBL-Web-Anwendungen

www.ktbl.de

Abstandsrechner

Beurteilung von Geruchsimmissionen im Umfeld von Tierhaltungsanlagen nach Richtlinie VDI 3894 Blatt 2

Mit diesem Rechner kann der Abstand zwischen Tierhaltungsanlagen und anderen Nutzungen, der zum Schutz vor erheblichen Geruchsbelästigungen eingehalten werden sollte, berechnet werden. Abhängig von der Geruchsquelle (Ställe, Silos oder Güllelager) und unter Berücksichtigung der Windhäufigkeit und der Gebietskategorie (Dorfgebiet, Wohngebiet usw.) werden nach der Richtlinie VDI 3894 Blatt 2 für die relevanten Richtungen die erforderlichen Abstände berechnet. Der Abstandsrechner erleichtert die Beurteilung der Geruchsimmissionen im Umfeld von Tierhaltungsanlagen für Schweine, Rinder, Geflügel, Pferde, Schafe und Ziegen.

Baukost - Investition Betriebsgebäude

Die Anwendung enthält über 200 Gebäudemodelle von Ställen für Rinder, Pferde, Milchziegen, Mutterschafe, Schweine und Geflügel sowie für Hallen. Die Gebäudemodelle werden anhand von Zeichnungen, Baubeschreibungen und Planungskennzahlen charakterisiert. Zahlreiche Stallmodelle entsprechen den EG-Richtlinien für den ökologischen Landbau. Für jedes Stallmodell können der Investitionsbedarf und die Jahreskosten insgesamt und je Tierplatz abgerufen und verschiedene Modelle direkt miteinander verglichen werden. Für die Ermittlung des

Investitionsbedarfs können folgende Werte angepasst werden: Preisniveau, Mengen und Preise der einzelnen Bauelemente. Für die Berechnung der Jahreskosten können Nutzungsdauer und Zinssatz festlegt werden. So lassen sich eigene Kalkulationen oder abgewandelte Modelle erzeugen.

Wirtschaftlichkeitsrechner Tier

Der "Wirtschaftlichkeitsrechner Tier" ermöglicht die Planung von Produktionsverfahren in der Tierhaltung. Acht Tierarten – darunter Rind, Schwein und Huhn – gekennzeichnet durch verschiedene Produktionsrichtungen sowie konventionelle und ökologische Produktionsverfahren können online bearbeitet werden. Je nach Tierart können verschiedene Spezifikationen vorgenommen, Preise und Mengen verändert und somit die Planung individuell angepasst werden. Leistungen und Direktkosten, ökonomische Erfolgsgrößen wie Deckungsbeitrag, Direktkostenfreie Leistung und Einzelkostenfreie Leistung sowie der Arbeitszeitbedarf und die Arbeitserledigungskosten werden kalkuliert. Zusätzlich werden Bauzeichnungen für das jeweilige Stallgebäude abgebildet.

Wirtschaftsdünger-Rechner

Mithilfe des "Wirtschaftsdünger-Rechners" können der betriebliche Anfall an Wirtschaftsdüngern kalkuliert, die Nährstoffgehalte abgeschätzt und die erforderliche Größe der Lagerstätten bestimmt werden. Aus über 100 Produktionsverfahren der Tierhaltung können Haltungsverfahren ausgewählt und angepasst werden, zum Beispiel der Weidegang, die Einstreumenge und -art und die Höhe der Futterverluste. Kalkuliert wird die Anfallmenge je Produktionsverfahren wie auch die Mengen an Stickstoff, Phosphor und Kali. Für die Planung der Lagerstätten können Niederschlagshöhe, befestigte Hoffläche und die anfallende Prozesswassermenge berücksichtigt werden. Die Ergebnisse enthalten Anfall- und Nährstoffmengen sowie den Investitionsbedarf für die erforderlichen Lagerstät-

Großvieheinheitenrechner

ten für den gesamten Betrieb.

Mit dem "Großvieheinheitenrechner" kann die Anzahl der Großvieheinheiten (GV) und der Flächenbesatz in GV/ha für Tierhaltungsbetriebe berechnet werden. Die Werte für Ente, Huhn, Pferd, Pute, Rind, Schaf, Schwein und weitere Tierarten sowie tierartspezifische Produktionsrichtungen werden auf der Basis der KTBL-Daten ermittelt. Für Aufzuchtferkel, Mast- und Zuchtschweine kann der GV-Wert, je nach Fragestellung, betriebsspezifisch berechnet und mit den KTBL-Daten verglichen werden.

