

Emissionen landwirtschaftlich genutzter Böden

KTBL-Schrift 483 KTBL-/vTI-Tagung 8.–10. Dezember 2010

Konzeption

Helmut Döhler, Dr. Sebastian Wulf | Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt

Programmkommission

PD Dr. Klaus Dittert | Christian-Albrechts-Universität zu Kiel Prof. Dr. Heiner Flessa | Johann Heinrich von Thünen-Institut (vTI) Prof. Dr. Hermann Kuhlmann | YARA GmbH & Co. KG Dr. Rainer Ruser | Universität Hohenheim

Projektbetreuung

Susanne Döhler | KTBL

Finanzielle Förderung

Gefördert durch das Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz aufgrund eines Beschlusses des Deutschen Bundestages.

© 2010

Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL) Bartningstraße 49 | 64289 Darmstadt Telefon +49 (0) 6151 7001-0 | Fax +49 (0) 6151 7001-123 E-Mail: ktbl@ktbl.de | http://www.ktbl.de

Alle Rechte vorbehalten. Die Verwendung von Texten und Bildern, auch auszugsweise, ist ohne Zustimmung des KTBL urheberrechtswidrig und strafbar. Das gilt insbesondere für Vervielfältigung, Übersetzung, Mikroverfilmung sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

Herausgegeben mit Förderung des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz aufgrund eines Beschlusses des Deutschen Bundestages.

Lektorat

Christine Weidenweber, VERBENE | Weibersbrunn Susanne Döhler | KTBL

Redaktion

Dr. Sebastian Wulf, Susanne Döhler | KTBL

Titelfoto

Susanne Döhler | KTBL

Vertrieb

KTBL | Darmstadt

Druck

Druckerei Lokay | Reinheim

ISBN 978-3-941583-45-0

Printed in Germany

Vorwort

Die Minderung von Emissionen ist ein wichtiges Ziel zur Luftreinhaltung und der Eindämmung des Klimawandels. In mehreren internationalen Vereinbarungen ist Deutschland Verpflichtungen hierzu eingegangen. Zu diesen gehört es auch, in regelmäßigem Turnus über die Emissionen klimawirksamer Gase und anderer umweltbelastender Komponenten aller Verursacherbereiche Bericht zu erstatten. Das von Thünen-Institut und das KTBL haben die Erstellung der für die Landwirtschaft notwendigen Inventare übernommen und stehen der Politik beratend zur Verfügung. Essentielle Grundlage zur Berechnung von Inventaren und zur Abschätzung von Minderungsmöglichkeiten von Emissionen sind wissenschaftliche Daten über die Relevanz von Quellen und Senken und die Auswirkung von Bewirtschaftungsmaßnahmen auf die Emissionen.

Mit der seit 1990 regelmäßig stattfindenden Tagung "Emissionen der Tierhaltung" bietet das KTBL eine Plattform zum Informations- und Erfahrungsaustausch zwischen Wissenschaft, Forschung, Beratung und Politik. Hierdurch wurde und wird dazu beigetragen, Emissionen der Tierhaltung besser zu quantifizieren, Minderungsmaßnahmen abzuschätzen und Kenntnislücken aufzuzeigen. Während die Emissionen aus der Tierhaltung bereits vergleichsweise gut quantifizierbar sind, ist die Höhe der Emissionen aus Böden noch mit großen Unsicherheiten behaftet, so dass für die Berechnung von Inventaren für die Berichterstattung noch sehr allgemeine Beziehungen zwischen Stoffeinträgen oder Bewirtschaftungsmaßnahmen und den daraus resultierenden Emissionen verwendet werden.

Mit der diesjährigen Tagung zu "Emissionen landwirtschaftlich genutzter Böden" auf Kloster Banz werden nun auch für die Emissionen aus Böden der Stand des Wissens, die Strategien und praktischen Lösungsansätze sowie Erkenntnisse zu den grundlegenden, die Emissionen aus Böden beeinflussenden Faktoren aufgezeigt. Neben den Erkenntnissen zur besseren Abschätzung der Emissionshöhen und der Möglichkeiten zur Emissionsminderung werden die zu Tage tretenden Wissenslücken helfen, weiteren Forschungsbedarf zu identifizieren.

Die vorliegende Veröffentlichung enthält die schriftliche Fassung der Vorträge und Poster. Unser Dank gilt der Programmkommission für die engagierte Unterstützung bei der Konzeption der Veranstaltung, den Referenten und Moderatoren sowie allen, die durch ihr Mitwirken die Durchführung der Tagung und die Herausgabe dieser KTBL-Schrift ermöglicht haben.

Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL)

Dr. Heinrich de Baey-Ernsten Hauptgeschäftsführer

Inhalt

Emissionen landwirtschaftlich genutzter Böden im Rahmen der deutschen Klimaberichterstattung Hans-Dieter Haenel, Annette Freibauer, Claus Rösemann, Eike Poddey, Andreas Gensior, Brigitte Eurich-Menden, Helmut Döhler
Effizienz der mineralischen Stickstoffdüngung Gerhard Baumgärtel
Stickstoffeffiziente und umweltschonende organische Düngung Reinhold Gutser, Thomas Ebertseder, Martine Schraml, Sabine von Tucher, Urs Schmidhalter
Ammoniakemissionen organischer Düngemittel Helmut Döhler, Dieter Horlacher
Ammoniakemissionen nach Ausbringung von Gärresten im Vergleich zu Güllen Andreas Pacholski, Dirk Gericke, Kang Ni, Henning Kage
Ammoniakemissionen mineralischer Düngemittel – Einflussfaktoren, Ausmaß und Möglichkeiten zur Reduzierung Michael Basten
Ammoniakemissionen aus Mineraldüngern – Versuchsergebnisse auf mitteleuropäischen Standorten Urs Schmidhalter, Martine Schraml, Andreas Weber, Reinhold Gutser
Lachgasemissionen landwirtschaftlich genutzter Böden – Stand des Wissens Heiner Flessa
Möglichkeiten zur Minderung der Lachgasfreisetzung aus landwirtschaftlich genutzten Böden bei mineralischer Stickstoffdüngung Reiner Ruser
Stickstoffmonoxidemission aus dem Boden und zugrunde liegende Prozesse CLAUS FLORIAN STANGE
Atmosphärische Deposition von Stickstoff in Waldökosystemen als Quelle für indirekte Lachgasemissionen RAINER BRUMME, NADINE EICKENSCHEIDT

Auswaschung von Stickstoff als Quelle indirekter Lachgasemissionen aus aquatischen Systemen Reinhard Well, Daniel Weymann, Heiner Flessa
Prozessorientierte Modellierung von ökosystemaren Stickstoffflüssen und assoziierten Treibhausgasemissionen Klaus Butterbach-Bahl, Ralf Kiese, Edwin Haas151
Regionalisierung und Differenzierung von Emissionsfaktoren Hermann F. Jungkunst163
Klimaschutz durch Moorschutz – Resultate eines aktuellen Verbundvorhabens Matthias Drösler, Jürgen Augustin, Lindsey Bergmann, Christoph Förster, Annette Freibauer, Michael Giebels, Maria Hahn-Schöfl, Heinrich Höper, Jochen Kantelhardt, Lena Schaller, Michael Sommer, Marc Werhahn 170
Einfluss der Landnutzung auf die Klimawirkung gestörter Niedermoore – Beispiele für sehr unterschiedliche Wirkungen Jürgen Augustin173
Kohlenstoffbilanz der Landnutzung in Europa – Ergebnisse aus dem CarboEurope-Projekt Annette Freibauer
Kohlenstoffsequestrierung in landwirtschaftlichen Böden – eine kritische Betrachtung Jens Leifeld182
Biokohle in Böden: Kohlenstoff-Sequestrierungsoption und Veränderung der Lachgasemissionen nach Biokohleapplikation CLAUDIA KAMMANN192
Die Treibhausgasbilanz am Agrarstandort Gebesee Christian Brümmer, René Dechow, Catharina Don, Annette Freibauer, Ernst-Detlef Schulze, Waldemar Ziegler, Olaf Kolle, Werner L. Kutsch
Modellierung von Kohlenstoffdioxid-, Lachgas- und Methanemissionen, Energieaufwand und Kosten verschiedener Düngestrategien Uwe Häussermann, Helmut Döhler221
Treibhausgasemissionen ökologischer und konventioneller Betriebssysteme Kurt-Jürgen Hülsbergen, Harald Schmid

"Carbon Footprint" der Weizenproduktion bei unterschiedlichem Stickstoff-Düngungsmanagement Frank Brentrup
Direkte Lachgasemissionen landwirtschaftlich genutzter Böden in Deutschland: Anwendung und Vergleich empirischer Modelle René Dechow, Annette Freibauer
Multiskalige Wasserhaushaltsmodellierung als Basis für die Abschätzung von Treibhausgasemissionen aus organischen Böden in Deutschland Bärbel Tiemeyer, Enrico Frahm, René Dechow, Annette Freibauer
Eine Inventur der landwirtschaftlich genutzten Böden Deutschlands zur Treibhausgasberichterstattung Clemens Siebner, Andreas Gensior, Anette Freibauer, Heiner Flessa
Grünlandumbruch, Grünlanderneuerungsumbruch, Etablierung von Grünland (GURU) Greta Roth, Andreas Gensior, Mirjam Helfrich, Reinhard Well, Annette Freibauer, Heiner Flessa
Lachgasemissionen von einem schnittgenutzten Grünland unter Berücksichtigung von Narbenalter und Düngung Thorsten Biegemann, Ralf Loges, Shimeng Chen, Klaus Dittert, Karl-Heinz Mühling, Friedhelm Taube
Einfluss von Stickstoffdüngung und hohen Radlasten auf Lachgasemissionen und Ertrag von Grünland Maria Schmeer, Klaus Dittert, Ralf Loges, Mehmet Senbayram, Friedhelm Taube
Lachgasemissionen nach der Ausbringung von Rinder- und Schweineflüssigmist auf Dauergrünland Gerhard Moitzi, Barbara Amon, Vitaliy Kryvoruchko, Thomas Amon, Josef Boxberger
Treibhausgas- und Ammoniakemissionen nach Ausbringung verschiedener Gärrückstände und tierischer Gülle in Emilia-Romagna, Italien Ulrike Wolf, Annette Freibauer, Heiner Flessa
Beitrag von Stickstoffdüngung und Ernterückständen zu den Lachgasemissionen einer Gemüsebaufläche Helena Pfab, Franz Buegger, Iris Palmer, Sabine Fiedler, Torsten Müller, Reiner Ruser

Lachgaskonzentrationen im Sickerwasser eines gemüsebaulich genutzten Ackerbodens Iris Palmer, Sabine Fiedler, Helena Pfab, Reiner Ruser, Franz Buegger, Torsten Müller
Klassifizierung von potenziellen indirekten Lachgasemissionen und Lachgaskonzentrationen im Grundwasser unter Berücksichtigung relevanter Steuergrößen der Denitrifikation Daniel Weymann, Lex Bouwman, Reinhard Well, Heinrich Höper, Knut Meyer, Heiner Flessa
Lachgasemission und Trockenmasseertrag aus Biogasproduktionssystemen auf einem Marschstandort Norddeutschlands Anna Techow, Klaus Dittert, Mehmet Senbayram, Robert Quakernack, Andreas Pacholski, Henning Kage, Friedhelm Taube, Antje Herrmann30
Vergleich der Treibhausgasemissionen beim Anbau verschiedener Energiepflanzen – Ergebnisse über sieben Monate aus einem Feldversuch Martin Gauder, Klaus Buttebach-Bahl, Wilhelm Claupein, Simone Graeff-Hönninger, Ralf Kiese, Regina Wiegel
Kurzumtriebsplantagen zur Erhöhung der Stickstoffeffizienz Andreas Fähnrich, Martin Kaupenjohann319
Emissionen landwirtschaftlich genutzter Böden in der multimedialen Stickstoffemissionsminderungsstrategie des Umweltbundesamtes Gabriele Wechsung, Markus Geupel, Rüdiger Hofmann, Till Spranger322
Die Stickstoffbilanz der deutschen Landwirtschaft (1990–2008) unter Berücksichtigung insbesondere von Landnutzungsänderungen (LUC vornehmlich durch Energiepflanzenanbau und -verwertung KLAUS ISERMANN, RENATE ISERMANN328
Neues EU-Projekt zur Treibhausgasbilanz Europas: GHG-Europe Axel Don, Barbara Michel, Annette Freibauer
Kohlenstoff- und Treibhausgasbilanzen europäischer Agrarstandorte Werner L. Kutsch und das CarboEurope Cropland Team33
Kohlenstoffdioxideinsparpotenziale in der Landwirtschaft – dargestellt am Beispiel eines Marktfruchtbetriebs Sven Grebe, Sebastian Wulf, Helmut Döhler
Einfluss der Rinderhaltung auf die Methanemission landwirtschaftlicher Böden Andreas Gattinger, Jean Charles Munch, Michael Schloter

Rückwirkungen des Einsatzes von Pflanzenschutzmittel auf energetische Parameter und potenzielle Treibhausgasemissionen beim Anbau von Winterweizen Wolfgang Heyer, Gerhard Hartmann, Peter Deumelandt, Olaf Christen352
Der Nitrifikationsinhibitor DMPP beeinflusst in Boden und Rhizosphäre Ammonium-oxidierende Bakterien, aber keine Archaeen Kristina Kleineidam, Kristina Košmrlj, Susanne Kublik, Iris Palmer, Helena Pfab, Sabine Fiedler, Michael Schloter
Wirkung eines Nitrifikationsinhibitors und einer Strohdüngung auf die Freisetzung klimarelevanter Gase nach Gärrestapplikation FRIEDHELM HERBST, JÜRGEN AUGUSTIN, WOLFGANG GANS
Isotopomere – eine Methode zur Aufklärung von Prozessen der Lachgasbildung in Böden Anette Giesemann, Reinhard Well, Heiner Flessa
TRANC – Ein neues Messsystem zur Erfassung des gesamten reaktiven atmosphärischen Stickstoffs Christian Brümmer, Oliver Marx, Dirk Lempio, Catharina Don, Werner L. Kutsch, Christof Ammann, Annette Freibauer
Anschriften der Autoren
KTBL-Veröffentlichungen
aid-Veröffentlichungen

Lachgasemissionen landwirtschaftlich genutzter Böden - Stand des Wissens

Lachgasemissionen landwirtschaftlich genutzter Böden – Stand des Wissens

HEINER FLESSA

1 Steuerung der Lachgasemission aus Böden

Böden sind die wichtigste Quelle für das klimawirksame Spurengas N₂O (Lachgas), das sowohl zum Treibhauseffekt beiträgt als auch den Abbau von Ozon in der Stratosphäre beschleunigt. Die N₂O-Emissionen aus den Böden haben ihren Ursprung im Wesentlichen in zwei Prozessen, die durch Bodenbakterien verursacht werden, der Nitrifikation und der Denitrifikation (Abb. 1). Die Höhe der N₂O-Freisetzung wird sowohl von den Prozessraten der Nitrifikation und Denitrifikation als auch vom relativen Stickstoffanteil, der während dieser Prozesse als N₂O freigesetzt wird, bestimmt. Während durch den aeroben Prozess der Nitrifikation N₂O nur gebildet, aber nicht verbraucht werden kann, können die unter Sauerstoffmangel aktiven, denitrifizierenden Bakterien N₂O sowohl produzieren (Reduktion von Nitrit zu N₂O) als auch verbrauchen (Reduktion von N₂O zu N₂). Da Nitrifikation und Denitrifikation im Boden aufgrund kleinräumig unterschiedlicher Redoxbedingungen nebeneinander ablaufen können, ist die exakte Zuordnung der N₂O-Produktion zu einem dieser Prozesse oft nicht möglich.

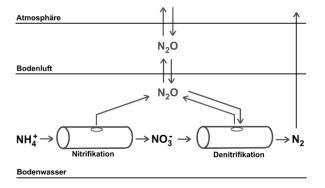


Abb. 1: Bildung und Verbrauch von N₂O in Böden (nach Davidson 1991)

Neben diesen beiden Hauptprozessen der N₂O-Bildung kann N₂O in Böden auch im Zuge der Nitrifizierer-Denitrifikation, der assimilatorischen und dissimilatorischen Nitratreduktion sowie der Chemodenitrifikation gebildet werden. Die wichtigsten Steuergrößen der N₂O-Bildung und Emission sind die Verfügbarkeit von Nitrat und Ammonium

KTBL-Schrift 483

im Boden, die O₂-Verfügbarkeit sowie Verfügbarkeit von mikrobiell leicht verwertbarer organischer Substanz. Die Wirkung von Bewirtschaftungsmaßnahmen auf die N₂O-Emission steht primär im Zusammenhang mit der Beeinflussung dieser Steuergrößen.

2 Lachgasemissionen aus der Landwirtschaft in Deutschland

Die Emission von N_2O aus landwirtschaftlich genutzten Böden zählt zu den wichtigsten Bilanzgrößen der Inventarisierung von Treibhausgasemissionen aus der Landwirtschaft. Bedeutsam sind sowohl direkte Emissionen aus den Produktionssystemen als auch indirekte N_2O -Emissionen, die durch gelöste und gasförmige Austräge reaktiver N-Verbindungen verursacht werden. Beide Bereiche zählen zu den Hauptquellgruppen der deutschen Emissionsberichterstattung. In Abbildung 2 ist die Höhe der N_2O -Emission aus der Landwirtschaft differenziert nach Quellbereichen, die im Rahmen der nationalen Emissionsberichterstattung bewertet werden, für die Jahre 1990–2008 dargestellt (NIR, 2010). Im Jahr 2008 lag die Gesamtemission bei 132 Gg N_2O (= 40920 Gg CO_2 -Äquivalente; berechnet für ein spezifisches Treibhauspotenzial von N_2O von 310) was einem Anteil an der Gesamtemission von Treibhausgasen in Deutschland von rund 4 % entspricht. Die Landwirtschaft ist mit Abstand der größte Emittent für N_2O in Deutschland. Die Emissionen stellen ca. 70 % der nationalen N_2O -Gesamtemission. In der Darstellung sind Emissionen aus der Bereitstellung von Betriebsmitteln (z. B. Düngemittelherstellung) oder dem Einsatz von Importfuttermitteln nicht enthalten.

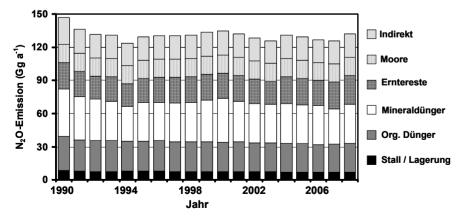


Abb. 2: N_2O -Emission aus der Landwirtschaft in Deutschland in den Jahren 1990–2008 differenziert nach verschiedenen Quellbereichen (nach NIR 2010)

Die Quelldifferenzierung der N_2O -Emissionen zeigt deutlich, dass bodenbürtige Emissionen den weitaus größten Anteil an der N_2O -Gesamtemission haben und dass die Höhe der N_2O -Emission maßgeblich durch das N-Management beeinflusst ist (Ausbringung organischer und mineralischer Dünger, Einarbeitung von Ernteresten). Weiterhin treten auch im Zuge des Humusabbaus N_2O -Emissionen auf (z.B. landwirtschaftlich genutzte Moorböden). Die Höhe des N-Eintrags, bzw. im Falle des Humusabbaus der N-Mobilisierung, sind damit die entscheidenden Faktoren für die Berechnung der Höhe der N_2O -Emission. Entsprechend der Vorgaben für die nationale Emissionsberichterstattung wird derzeit von einer direkten N_2O -N-Emission in Höhe von 1,25 % des N-Eintrags ausgegangen.

Insgesamt ist die N_2 0-Emission aus der Landwirtschaft seit 1990 um rund 10 % gesunken, was in erster Linie auf den landwirtschaftlichen Strukturwandel in den neuen Bundesländern nach der Wiedervereinigung zurückzuführen ist.

3 Datengrundlage und aktuelle Forschungsfragen

Zusammenfassende Auswertungen zur Höhe der N₂O-Emission aus landwirtschaftlich genutzten Böden und den wichtigsten Steuergrößen wurden von Stehfest und Bouwman (2006) basierend auf einer weltweiten Literaturanalyse erstellt, Freibauer (2003) integrierte europäische Datensätze zur N₂O-Emission aus Agrarböden und Jungkunst et al. (2006) veröffentlichten eine Synthese der Daten zur N₂O-Emission aus landwirtschaftlich genutzten Böden in Deutschland. Als wichtige Standorteigenschaften, die die Höhe der N₂O-Emission beeinflussen, wurden Klimafaktoren (Niederschlag, Temperatur, Frostperioden) sowie Eigenschaften des Oberbodens (Textur, Humusgehalt, Stickstoffgehalt, pH-Wert) identifiziert. Der wichtigste Bewirtschaftungsfaktor, der das Ausmaß der N₂O-Emission bestimmt, ist die Höhe des N-Eintrags. Weiterhin sind alle Maßnahmen relevant, die die Prozesse der Bildung und des Verbrauchs von Ammonium und Nitrat beeinflussen. Die Wirkung des N-Eintrags auf die N₂O-Emission wird erheblich durch Standortfaktoren beeinflusst. Die Annahme eines einheitlichen, mittleren N₂O-Emissionsfaktors für eingetragene N-Mengen ist ein praktikabler Ansatz zur Erfassung von bodenbürtigen N₂O-Emissionen auf nationaler Ebene (siehe Punkt 2), für eine regional oder lokal differenzierte Bewertung der Emissionen ist dieser Ansatz jedoch unzureichend.

In Deutschland liegen die gemessenen N_2O -Emissionen landwirtschaftlicher Böden zwischen < 0,5 und ca. 17 kg N_2O -N ha⁻¹ a⁻¹ (Jungkunst et al. 2006). Abbildung 3 zeigt die Verteilung der 27 Standorte in Deutschland, an denen Ergebnisse von ganzjährigen Freilandmessungen zur N_2O -Emission vorliegen (Stand 2006, Jungkunst et al. 2006). Die Ergebnisse aus Deutschland zeigen, dass die relativ niederschlagsarmen Standorte in

4 KTBL-Schrift 483 KTBL-Schrift 483

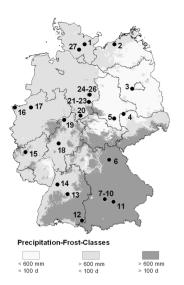


Abb. 3: Standorte in Deutschland mit ganzjährigen Messungen zur N_2O -Emission aus landwirtschaftlich genutzten Böden (aus Jungkunst et al. 2006). Die Grauschattierung kennzeichnet Regionen mit unterschiedlichen Jahresniederschlägen und Frosttagen

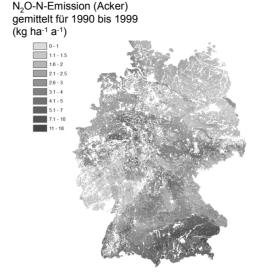


Abb. 4: Modellierte N_2O -Emission aus Ackerböden in Deutschland unter Berücksichtigung der Variabilität von Klima, Bodeneigenschaften, N-Eintrag und Kultur (Dechow und Freibauer 2010; in diesem Tagungsband)

Ostdeutschland ein niedriges N_2O -Emissionsniveau aufweisen und die höchsten Emissionen an Standorten mit hohen Niederschlägen, ausgeprägten Frostperioden im Winter und feiner Bodentextur zu finden sind. Dieses Muster findet sich auch in neuesten Arbeiten zur Modellierung der N_2O -Emission aus den Agrarböden in Deutschland (Abbildung 4; Dechow und Freibauer 2010 in diesem Tagungsband).

Trotz der relativ großen Anzahl von Messreihen zur N₂O-Emission besteht in mehreren Bereichen des Themenkomplexes "N₂O-Emission landwirtschaftlicher Böden" nach wie vor Forschungsbedarf, um Kenntnislücken in den Prozesszusammenhängen der N₂O-Emission sowie in den Ursache-Wirkungsketten des Zusammenspiels von Bewirtschaftungsmaßnahmen und Standortfaktoren auf die N₂O-Emission zu schließen. Dies ist einerseits erforderlich für eine wissenschaftlich fundierte Bewertung der Klimawirksamkeit von Produktionssystemen und andererseits ist es eine wichtige Basis für die Entwicklung und Präzisierung von Standort- und Betriebstyp-optimierten Emissionsminderungsmaßnahmen. In der nachfolgenden Aufstellung, die keinen Anspruch auf Vollständigkeit erhebt, sind aktuelle Forschungsthemen zur N₂O-Emission aus Agrarböden zusammengestellt.

- Regionalisierung und Modellierung der N₂O-Emission aus Agrarböden
- Quantifizierung der N₂O-Reduktion und der N₂-Bildung unter Feldbedingungen

- Einfluss der Kultur-, Fruchtfolge und Düngerart auf die N₂O-Emission
- Einfluss neuer Dünger und Düngeverfahren auf die N₂O-Emission
- Rückkopplung der Humusanreicherung in Böden auf die N₂O-Emission
- Wirkung des Humusabbaus auf die N₂O-Emission
- Höhe indirekter N₂O-Emissionen durch Austräge reaktiver N-Verbindungen
- Standort- und Betriebstyp-optimierte Emissionsminderungsmaßnahmen

4 Minderung der Lachgasemission

Die Landwirtschaft kann sowohl die direkten als auch die indirekten Emissionen von N_2O deutlich senken. Bei der Bewertung von Emissionsminderungsmaßnahmen sollten sowohl das Minderungspotenzial der Maßnahme als auch ihre mögliche Ertragswirksamkeit sowie die Kosten der Maßnahme berücksichtigt werden. Weiterhin gilt es, mögliche positive oder negative Nebeneffekte auf die Umwelt sowie auf Strukturen des ländlichen Raumes in die Bewertung einzubeziehen.

Für die Landwirtschaft stellt sich die Herausforderung, die Produktionsprozesse unter Berücksichtigung des Klimaschutzes zu optimieren. Dies bedeutet für den Landwirt, dass die Emissionen bezogen auf den Ertrag verringert werden müssen. Die Systembewertung von Produktionsverfahren sollte jedoch nicht nur auf der Basis einer einzelnen klimawirksamen Substanz erfolgen, sondern es müssen alle klima- und umweltrelevanten Emissionen einbezogen werden.

Der zentrale Ansatzpunkt für die Minderung der N₂O-Emission ist die Steigerung der N-Effizienz in der landwirtschaftlichen Produktion. Dies gilt für alle Produktionsbereiche und schließt die Vermeidung von N-Überschüssen bei der Fütterung ebenso ein wie die Vermeidung von N-Überschüssen in der pflanzlichen Produktion und die Verminderung umweltbelastender N-Austräge (z.B. NH₃-Emissionen, NO₃-Auswaschung), die zu indirekten N₂O-Emissionen führen. Auch N-Verluste, die keine direkte Umweltwirksamkeit aufweisen (z.B. N₂-Freisetzung), sollten minimiert werden, da sie die N-Effizienz der Produktion deutlich verringern können. Eine effizientere Verwertung des Stickstoffs in der Landwirtschaft verringert nicht nur die N₂O-Emission, sie hat gleichzeitig zahlreiche andere positive Umweltwirkungen (z.B. Minderung der NH3-Emission und der Nitratauswaschung) und kann im Falle der Einsparung von Handelsdünger auch betriebswirtschaftlich vorteilhaft sein. Die N-Flächenbilanz der Landwirtschaft in Deutschland zeigt, dass besonders in Regionen mit intensiver Veredelungswirtschaft und einem hohen Aufkommen an Wirtschaftsdünger ein großes Potenzial zur Steigerung der N-Effizienz besteht. Eine Verbesserung der Inwertsetzung der Wirtschaftsdünger im Zuge eines effizienten Nährstoffrecyclings ist hier eine zentrale Maßnahme zur N₂O-Emissionsminde

KTBL-Schrift 483 KTBL-Schrift 483